Quasars and AGN

Survey of Astrophysics A110

3C 273

Jet

10 arcsec
Quasars and AGN

Goals:
- What are quasars and how do they differ from galaxies?
- What powers AGN’s.
- Jets and outflows from QSOs and AGNs

Discovery of Quasars
- **Radio Observations of the Sky**
 - Reber (an amateur astronomer) built the first radio telescope in 1936.
 - Strong radio emission was detected from the Sgr A, Cas A (Galactic) and Cyg A (extragalactic). Identified as star-like.
 - Cyg A has strong emission lines and lies at a redshift $z=0.057$ (220 Mpc for $H_0=75$ km s$^{-1}$ Mpc$^{-1}$). cyg A has 10^7x radio luminosity of our galaxy.
 - Schmidt (1963) showed that some of the radio stars were not in our own Galaxy (for 3C 273) - quasi-stellar radio sources (*quasars*). Now denoted as **QSOs** (radio bright and radio quiet).
High Redshift Objects

- **Relativistic Redshifts**

 - Redshifts of quasars have been measured over $z=6$. Using the standard redshift relation we have to explain velocities greater than the speed of light!

 - We move back to special relativistic form for redshift. It is not a linear equation.

 \[
 \frac{\lambda - \lambda_0}{\lambda_0} = z = \sqrt{\frac{c + v}{c - v}} - 1
 \]

- λ: wavelength observed
- λ_0: restframe wavelength
- v: apparent velcity
- z: redshift
- c: speed of light

- As $v \to c$ redshift \to infinity

- For the highest redshift QSO ($z=5.01$) the increase in the wavelength of the Hα emission line is a factor of 6.01 (656.2 nm \to 3.94 μm).

- The apparent recessional velocity is

 \[
 \frac{v}{c} = \frac{(z + 1)^2 - 1}{(z + 1)^2 + 1}
 \]

- For $z=5.01$ v is 95% of the speed of light.
<table>
<thead>
<tr>
<th>z</th>
<th>v/c</th>
<th>Distance (Mpc)</th>
<th>Distance (10^9 ly)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0.100</td>
<td>0.095</td>
<td>400</td>
<td>1.30</td>
</tr>
<tr>
<td>0.200</td>
<td>0.180</td>
<td>750</td>
<td>2.43</td>
</tr>
<tr>
<td>0.300</td>
<td>0.257</td>
<td>1050</td>
<td>3.42</td>
</tr>
<tr>
<td>0.400</td>
<td>0.324</td>
<td>1310</td>
<td>4.28</td>
</tr>
<tr>
<td>0.500</td>
<td>0.385</td>
<td>1550</td>
<td>5.04</td>
</tr>
<tr>
<td>0.750</td>
<td>0.508</td>
<td>2020</td>
<td>6.57</td>
</tr>
<tr>
<td>1.00</td>
<td>0.600</td>
<td>2370</td>
<td>7.71</td>
</tr>
<tr>
<td>1.50</td>
<td>0.724</td>
<td>2840</td>
<td>9.27</td>
</tr>
<tr>
<td>2.00</td>
<td>0.800</td>
<td>3140</td>
<td>10.2</td>
</tr>
<tr>
<td>3.00</td>
<td>0.882</td>
<td>3480</td>
<td>11.4</td>
</tr>
<tr>
<td>4.00</td>
<td>0.923</td>
<td>3670</td>
<td>12.0</td>
</tr>
<tr>
<td>5.00</td>
<td>0.946</td>
<td>3780</td>
<td>12.3</td>
</tr>
<tr>
<td>∞</td>
<td>1.00</td>
<td>4130</td>
<td>13.5</td>
</tr>
</tbody>
</table>

Note: This table assumes a Hubble constant $H_0 = 70$ km/s/Mpc, a matter density parameter $\Omega_m = 0.3$, and a dark energy density parameter $\Omega_\Lambda = 0.7$ (see Chapter 28).
Luminosities of QSOs

- From the distance modulus and the redshift distance relation we can calculate the luminosities of QSOs.
- QSO 3C 273 has a luminosity of 10^{40} W or $2.5 \times 10^{13} \, \text{L}_\odot$. Our Galaxy has a luminosity of 10^{37} W. QSOs are amongst the brightest objects in the sky.
- Radiation in not thermal (i.e. a blackbody spectrum). The spectrum of a QSO has a power law form from synchrotron radiation (acceleration of relativistic electrons).

\[
f_v \propto \nu^{-0.7}
\]

- f_v: flux per unit frequency
- ν: frequency
- The strong emission lines come from the ionization of rapidly moving clouds of Hydrogen.
- The non-thermal spectrum seen in QSO spectra is indicative of the spectra seen from black holes.
- QSOs are powered by massive black holes at the center of a galaxy (host galaxy).
Synchrotron radiation

Blackbody radiation

Intensity

Frequency
Quasars and AGN
Quasars and AGN

Survey of Astrophysics A110

(a) Host galaxy

(b) Quasar
Other galaxy
Merging galaxy

(c) Dust and gas tail
Quasar
– Variability of QSOs

• QSOs vary on time scales of a few days, weeks and months.
• This limits the possible size of a QSO.
• Imagine a QSO 1 yr across (0.36 pc).
• If the QSO luminosity varies instantaneously then the light from the part of the QSO closest to the observer would arrive 1 year before the light from the furthest part of the QSO.
• A sudden flash of light would appear as a slow rise and fall in intensity over the course of a year.
• Variations on the time scale of a day mean that the QSO must be less than 200 AU.
• QSOs must be small and massive to produce a large amount of energy and vary over a short time period.
Bridging the gap between QSOs and galaxies.

- QSOs are 1000x brighter than normal galaxies why are there not intermediate luminosity galaxies?
- There are. A class of galaxies called Seyferts (I and II).
- These galaxies have bright compact nuclei (Active Galactic Nuclei - AGN) and have luminosities from 10^{36}-10^{38} W.
- They make up approximately 10% of luminous spiral galaxies (this number is not certain).
- They tend to have weak radio emission.
- Some Elliptical galaxies also have strong radio emission (radio galaxies). They tend to have jets of high energy particles (from the center of the galaxy) emitting synchrotron emission.
- These jets produce radio lobes on either side of the Elliptical galaxy (e.g. Centaurus A).
• **Powering AGNs**

 Massive black holes as central engines

 • Lynden-Bell (1968) suggested than supermassive black holes might power AGNs.

 • The luminosity that a black hole can output through accretion of matter is given by the Eddington limit.

\[
L_{\text{Edd}} = 30,000 \left(\frac{M}{M_\odot} \right) L_\odot
\]

• \(L_{\text{Edd}} \): Eddington luminosity

 \(M \): Mass of black hole

 • For luminosities \(L > L_{\text{Edd}} \) the radiation pressure will stop material accreting onto the black hole.

 • For QSOs 3C 273 \(L = 3 \times 10^{13} L_\odot \). If this is the Eddington limit (the smallest black hole that can produce this luminosity) then the black hole mass \(M = 10^9 M_\odot \).

 • Supermassive black holes may have been observed in the Andromeda Galaxy (M31) where rapidly rotating stars surround the core of the galaxy (suggest \(10^7 M_\odot \) system within 5 pc of the galaxy center.)
- **Density of supermassive black holes**

 - Supermassive black holes are not hard to create - they do not require a massive star or supernovae.
 - Using simple Newtonian arguments we can estimate the density of matter in a supermassive black hole.
 - The density of matter is given by \(\rho = \frac{3M}{4\pi R^3} \)

 - The mass of a black hole is related to its Schwarzschild radius by
 \[R = \frac{2GM}{c^2} \]

 - Substituting for the radius we can estimate the relation between density and mass of a black hole.
 \[\rho = \frac{3c^6}{32\pi G^3 M^2} \]

 - For a “normal” black hole \(M=10M_\odot \) the density is \(10^{17} \text{ kg m}^{-3} \) (1/5th density of a neutron star).
 - For a supermassive black hole with \(M=10^9 \, M_\odot \) the average density is only 10 kg m\(^{-3}\) (10x density of air).
 Blob at A

4 light-years

5 light-years

Blob at B, six years later

First pulse of light reaches Earth in 2000

Second pulse of light: emitted six years later, but has 4 fewer light-years to travel — reaches Earth two years after the first pulse, in 2002

To Earth

Actual speed of blob = $\frac{5}{6}c$

a View from above
b View from Earth

Apparent speed of blob = 1.5c

2000 → 3 light-years ← 2002