SN 1997cj
$z = 0.55$

SN 1997ce
$z = 0.44$

SN 1997ck
$z = 0.97$
Cosmology

• **Goals:**
 – How does the expansion of the Universe depend on its mass?
 – What is the fate of the Universe?
 – What was the early Universe like?

• **Obler’s Paradox**
 – Why is the sky dark?
 • Imagine an infinite, static Universe full of stars (or a forest full of trees).
 • If we look in any direction then our line of sight should (eventually) intersect a star.
 • The sky should be bright!
 • The Universe is however bounded by time if not distance (as we look back in redshift we look back in time). The size of the Universe is then 15x10⁹ yrs.
 • As we look at higher redshift the light is redshifted to longer wavelengths and the sky should appear dark in the visible but bright in the infrared or radio.
 • The sky does glow at longer wavelengths.
• The Creation and Fate of the Universe

• Cosmology is the study of the Universe as a whole. In modern cosmology we try to understand the origin of the Universe, its organization, its evolution, and its ultimate fate.

• Early cosmologies assumed that the Earth or Sun was at the center of the Universe. The Greek astronomer Ptolemy (140 A.D.) had the Earth at the center, which lasted until the time of Copernicus. Copernicus's less complicated cosmology (1515 A.D.) had the Sun at the center of the Universe.

• However, with the discovery of the Sun's location in the Galaxy by Shapely (1920s), it became clear that in any cosmology, the Earth, Milky Way Galaxy, Local Group or Local Supercluster should occupy no special position in the Universe.

• Modern cosmology relies on Einstein's Special and General Theories of Relativity which relate measurements of length, time, velocity and mass. In contrast to Newton's view, Einstein saw the gravity of mass not as a force, but as a manifestation of the curvature of spacetime.
• **Observational Constraints**

• 1. Distribution of Galaxies
 – **Very distant galaxies are uniformly distributed on the sky. This implies that the Universe is the same in all directions.**
 – **Cosmological Principal**
 • **The Universe is homogeneous and isotropic. The distribution of matter, on large scales, does not depend on the distance from the Sun or on the direction in which we look.**

• 2. The Universe is Expanding.
 – **The spectra of galaxies are redshifted implying that the galaxies are moving away from us. The speed of recession, \(v \), is linearly related to the distance, \(d \), of the galaxy by**
 • \(v = H d \)
 – **(Hubble’s Law)**
<table>
<thead>
<tr>
<th></th>
<th>Original distance (Mpc)</th>
<th>Later distance (Mpc)</th>
<th>Change in distance (Mpc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A–B</td>
<td>100</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>A–C</td>
<td>200</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>A–D</td>
<td>300</td>
<td>450</td>
<td>150</td>
</tr>
<tr>
<td>A–E</td>
<td>100</td>
<td>150</td>
<td>50</td>
</tr>
</tbody>
</table>
3. Age of Universe \[T_0 \equiv \frac{1}{H_0} \equiv 13.7 \text{ Gy} \]

4. Composition of Universe

- In the early Universe the principal elements were Hydrogen and Helium. Miniscule amounts of Deuterium (isotope of hydrogen) and the light elements Lithium and Beryllium were also created.
- Universe must be older than the oldest stars. The age of the Sun implies that the Universe is at least 5 billion years old. Stars in globular clusters suggest that the Universe is at least 13 billion years old.
5. The Microwave Background Radiation
 - The isotropy (uniformity) of the Microwave Background Radiation provides the strongest evidence that the Universe is isotropic and homogeneous on large scales.

6. Why the Sky is Dark at night.
 - Olber’s Paradox.

• **Cosmic Horizon**

 – Light requires time to travel from one point to another. Since the age of the Universe is 13.7 Billion years, we can see nothing farther than 13.7 billion light years away, even if matter exists there. Thus light defines a cosmic horizon. The region inside the cosmic horizon is called the Visible Universe.

• **Size of the Visible Universe**

 – We can use the distance to the Cosmic Horizon as a measure of the Radius of the Universe. Thus the Radius of the Visible Universe is 13.7 billion light years. At present Astronomers can detect objects at distances up to about 10 billion years.
• Olbers' Paradox

• In 1823, Olber considered the question:
 – Why is the sky at night dark?

• Olber was confused by the darkness of the night sky when observations showed that stars appeared to be evenly distributed throughout space.

• Olber reasoned that if stars (or galaxies) were evenly distributed throughout space, then eventually an observer's line-of-sight should encounter the surface of a star. Therefore, the whole sky should be glowing like the surface of a star.
• The resolution to Olber's paradox is that the Universe has only been in existence for 13.7 billion (or less) years. Since we look back in time when we look at distant objects, we eventually look back to a time before stars existed. Thus most random sight lines do not hit a star --- for them to do so the Universe would have to be very very much older.

• (Another effect is that the expansion of the Universe also diminishes the brightness of the night sky, because as light from distant galaxies is redshifted it loses energy.)

• The resolution to Olber's paradox tells us about the nature of the Universe.
• Cosmological Theories

• In the 1940’s and 1950’s two competing cosmological models were heavily debated. These were the Big Bang Model (now accepted) and the Steady State Model. The debate between proponents of the models considerably sharpened our views about the Universe, and about cosmology.

• Steady State Theory of the Universe (A failed theory).

• According to the Steady State Theory (1940s), the Universe never had a beginning and will never have an end. Furthermore, the Universe should have about the same amount of matter everywhere and look about the same in every direction. These conditions are called the perfect cosmological principal.

• In the Steady State Theory, as the Universe expands matter must be created to fill the space left behind. Matter is created out of nothing. Thus, the properties of the matter in some large volume of the Universe should be constant with time.
• The fact that matter is created, which violates the important conservation of energy law (remember energy and mass are equivalent), is not a real problem. After all, when the issue is the origin of the Universe, at some point matter must be created. [Only one atom would have to be created in a cubic cm of space every million billion years (10^{15} years)].

• In its purest form, the Steady State Theory is not consistent with observations of the Universe. For example, we now know that the Universe has many more quasars and active galactic nuclei as we look out to larger and larger distances from the Milky Way. Since we are looking further and further into the past this implies that the Universe is not constant --- it evolves with time.

• Attempts (sometimes very elaborate) to modify the Steady State Theory to account for the observed evolution do not provide a convincing explanation of the Universe. The Big Bang model is now preferred by most scientists since it provides a more “simple” explanation for some fundamental observations.
• Big Bang Theories of the Universe.

• Lemaitre proposed a specific Big Bang model for the Universe in the 1940s.

• Since the Universe is expanding, it must now be evolving into a state where the matter in the Universe is becoming more and more spread out. At some time in the past, however, the matter in the Universe must have been extremely compressed.

• In Big Bang theories, the Universe began some time ago (in the past) in a primeval fireball. From that moment on the Universe has been expanding, and as it does so, its properties change. For example, at some point in time (redshift) galaxies will begin to form.
• Big Bang theories explain:
 – 1. How the observed amounts of deuterium, helium and lithium are produced in the early Universe.
 – 2. The existence of the 3 degree Kelvin cosmic background radiation which is the electromagnetic spectrum of a black body observed in every direction out into space.
 – 3. Provide a natural explanation for the observed changes in the Universe as we look back in time.
Cosmic Nucleosynthesis of Light Elements in the Universe

When the Universe was only about 10 seconds old, its matter was extremely compressed and it had a temperature of about 3×10^9 degrees K. From this time, to a time when the Universe was about 15 minutes old and its matter had a temperature of about 0.4×10^9 degrees K, cosmic nucleosynthesis took place.

Cosmic nucleosynthesis refers to the fusion of protons and neutrons into light elements. [Note that stellar nucleosynthesis refers to fusion reactions inside stars which can also result in the production of heavy elements.]
• Model calculations predict that deuterium (isotope of hydrogen with one proton and one neutron), helium, and small amounts of lithium were synthesized in the Big Bang. The models predict that 75% of the mass should be hydrogen, while the remaining 25% should be helium.

• The observed amounts of light elements are in rough agreement with predictions of cosmic nucleosynthesis in Big Bang models. Complications make it difficult to test the models precisely. For example, clumping of matter during cosmic nucleosynthesis could alter the ratios of the elements produced. In addition stellar nucleosynthesis contaminates primordial matter.
Abundance of light elements

Density of Ordinary Matter (Relative to Photons)

Element Abundance (Relative to Hydrogen)

Helium 4 \(^4\text{He}\)

Deuterium \(^2\text{H}\)

Helium \(^3\text{He}\)

Lithium \(^7\text{Li}\)
The 3 Degree Kelvin Cosmic Background Radiation

In 1965, observations by Penzias and Wilson in the microwave (radio) region revealed a signal which did not depend on the region of the sky that was being observed, and which did not vary with time or the seasons. Subsequent observations showed this signal to have the spectrum of a black body at 3 degrees Kelvin (3 K). We interpret this radiation as a relic of the Big Bang.

After cosmic nucleosynthesis, the Universe continued to expand. As the Universe expanded, it cooled so that after about 200-400 Mys reached a temperature of about 3,000 K.
• At this point in time the temperature of the free protons and electrons that made up the bulk of the matter in the Universe was low enough that the protons and electrons combined to form hydrogen atoms. This was a major event (called RECOMBINATION) because it meant that the Universe was now transparent to radiation.

• Prior to becoming transparent to radiation, a photon could not travel very far in the Universe before being absorbed (like a photon in the interior of the Sun). However, once the Universe became transparent to radiation it could travel throughout the Universe without a high probability of ever being absorbed.

• The radiation arising at this time had the spectrum of a 3000K black body. However, when we observe this radiation today it is redshifted due to the expansion of the universe. The redshift is so high (z = 1000) that the spectrum of this cosmic background radiation peaks at a wavelength of a 3 degree black body.
a Before recombination

b After recombination
The diagram illustrates the evolution of mass density in the universe with respect to age. The curves represent the mass density of radiation (ρ_{rad}) and matter (ρ_m) as a function of the age of the universe (in years). The x-axis denotes the age of the universe, ranging from 1 year to 10^{10} years, while the y-axis shows the mass density in kg/m3. The universe transitions from radiation domination to matter domination over time, as indicated by the labels 'Radiation dominates' and 'Matter dominates'.
• COBE

– In 1989 NASA launched the Cosmic Background Explorer (COBE) satellite. Observations from this mission showed that

 • (1) the microwave background spectrum matches that of a black body at 2.74 K.
 • (2) the microwave background is extremely smooth (to a few parts in 10^5).
 • (3) The small residual fluctuations that are seen may represent inhomogeneities that are the seeds of galaxy formation.

– Note:

 • The motion of the Sun through the Universe produces a dipole anisotropy which can be corrected out of the raw data. The microwave background provides a very accurate way of determining the Sun’s (or Milky Way’s) peculiar velocity (ie the velocity of the Milky Way with respect to the uniform expansion of the Universe).
Old Universe - New Numbers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω_{m}</td>
<td>1.02 ± 0.02</td>
<td>η</td>
<td>$(6.1^{+0.3}_{-0.3}) \times 10^{-10}$</td>
</tr>
<tr>
<td>w</td>
<td>< -0.78 (95% CL)</td>
<td>$\Omega_{b} \Omega_{m}^{-1}$</td>
<td>0.17 ± 0.01</td>
</tr>
<tr>
<td>Ω_{Λ}</td>
<td>0.73 ± 0.04</td>
<td>σ_8</td>
<td>0.84 ± 0.04</td>
</tr>
<tr>
<td>$\Omega_{h} h^2$</td>
<td>0.0224 ± 0.0009</td>
<td>$\sigma_8 \Omega_{m}^{0.5}$</td>
<td>0.44 ± 0.04</td>
</tr>
<tr>
<td>Ω_{b}</td>
<td>0.044 ± 0.004</td>
<td>z_{dec}</td>
<td>1089 ± 1</td>
</tr>
<tr>
<td>n_h</td>
<td>$(2.5 ± 0.1) \times 10^{-7}$ cm$^{-3}$</td>
<td>Δz_{dec}</td>
<td>195 ± 2</td>
</tr>
<tr>
<td>$\Omega_{\text{m}} h^2$</td>
<td>0.135 ± 0.009</td>
<td>h</td>
<td>0.71 ± 0.03</td>
</tr>
<tr>
<td>Ω_{m}</td>
<td>0.27 ± 0.04</td>
<td>r_s</td>
<td>147 ± 2 Mpc</td>
</tr>
<tr>
<td>$\Omega_{\nu} h^2$</td>
<td>< 0.0076 (95% CL)</td>
<td>d_L</td>
<td>14.0 ± 0.3 Gpc</td>
</tr>
<tr>
<td>m_ν</td>
<td>< 0.23 eV (95% CL)</td>
<td>θ_4</td>
<td>0°598 ± 0°002</td>
</tr>
<tr>
<td>T_{cmb}</td>
<td>2.725 ± 0.002 K</td>
<td>l_4</td>
<td>301 ± 1</td>
</tr>
<tr>
<td>z_s</td>
<td>20 ± 5 (95% CL)</td>
<td>t_0</td>
<td>13.7 ± 0.2 Gyr</td>
</tr>
<tr>
<td>t_s</td>
<td>180 ± 60 Myr (95% CL)</td>
<td>t_{dec}</td>
<td>379 ± 9 kyr</td>
</tr>
<tr>
<td>$r (k_{\text{ii}})$</td>
<td>0.002 Mpc$^{-1}$ < 0.71 (95% CL)</td>
<td>Δt_{dec}</td>
<td>118 ± 7 kyr</td>
</tr>
<tr>
<td>$A (k_{\text{ii}})$</td>
<td>0.05 Mpc$^{-1}$</td>
<td>z_{eq}</td>
<td>3233 ± 104</td>
</tr>
<tr>
<td>n_s</td>
<td>410.4 ± 0.9 cm$^{-3}$</td>
<td>τ</td>
<td>0.17 ± 0.04</td>
</tr>
<tr>
<td>$n_s (k_{0.05}$)</td>
<td>0.99 ± 0.04 (WMAP only)</td>
<td>$d n_s / d \ln k$</td>
<td>$-0.311^{+0.016}_{-0.014}$</td>
</tr>
</tbody>
</table>

These best cosmological parameter values are from a combination of a wide variety of cosmological measurements, including the WMAP, COBE, CBI, and ACBAR CMB measurements and 2dFGRS, HST, SN1a, and Lyman-alpha forest measurements.
• The Structure of the Universe

• The large scale structure (shape) of the Universe and its ultimate fate are determined by the Universe's (current) density. The different fates of the Universe are determined by a quantity known as the CRITICAL DENSITY.

• 1. Closed Universe.
 – The Universe will someday cease expanding because its density is sufficiently large (i.e. it is above the critical density) that gravity will eventually stop the expansion. The large scale structure of a closed universe is spherical.
 – After the expansion ceases, the Universe will collapse back in on itself in a `big crunch.' Some speculate that after the big crunch another big bang would occur and that the Universe oscillates (i.e., ..., big bang, then expansion, then collapse, big bang etc ...).
 – The 2 dimensional analogy of space in this model is the surface of a sphere.
a Spherical space \(\rho_0 > \rho_c, \Omega_0 > 1 \)

Parallel light beams converge
• **2. Flat Universe.**

 – *If the density of the Universe equals the critical density, its large scale structure is flat and its expansion will need an infinite amount of time to stop.*

 – *The 2 dimensional analogy of space in this model is the surface of a plane.*

 – *Theoretical work suggests that the Universe is flat. This model cannot be ruled out by present observations.*
b Flat space

$\rho_0 = \rho_c, \Omega_0 = 1$

Parallel light beams remain parallel
• 3. Open Universe.

– The Universe will expand forever because its density is too low (i.e. below the critical density) for gravity to stop the expansion. The large scale structure is saddle-like. Even after an infinite amount of time the Universe will still be expanding. The 2 dimensional analogy of space is the surface of a saddle.

– Observations currently indicate that the Universe is open, but this assumes that we have correctly estimated the amount of non-luminous dark matter present in the Universe.
c Hyperbolic space $\rho_0 < \rho_c$, $\Omega_0 < 1$

Parallel light beams diverge
Table 28-1: The Geometry and Average Density of the Universe

<table>
<thead>
<tr>
<th>Geometry of space</th>
<th>Curvature of space</th>
<th>Type of universe</th>
<th>Combined average mass density (ρ_0)</th>
<th>Density parameter (Ω_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spherical</td>
<td>positive</td>
<td>closed</td>
<td>$\rho_0 > \rho_c$</td>
<td>$\Omega_0 > 1$</td>
</tr>
<tr>
<td>Flat</td>
<td>zero</td>
<td>flat</td>
<td>$\rho_0 = \rho_c$</td>
<td>$\Omega_0 = 1$</td>
</tr>
<tr>
<td>Hyperbolic</td>
<td>negative</td>
<td>open</td>
<td>$\rho_0 < \rho_c$</td>
<td>$\Omega_0 < 1$</td>
</tr>
</tbody>
</table>
• Remember that the large scale structure of the Universe refers to its overall shape as determined by its density. According to General Relativity, within the Universe itself space will have many small scale curves caused by individual masses.

• With all 3 large scale structures, every observer in the Universe statistically sees about the same thing in every direction. There is no center to the expansion which exists within the Universe itself. (This is a modified form of the perfect cosmological principle in the Big Bang model.)
• NB. We can determine the shape of the Earth from Observations. For example, If we walk in a straight line we return to our starting point, Hence the Earth must posses positive curvature.

• Similarly the structure and shape of the Universe can be determined by many techniques such as counting galaxies and quasers, or by performing a direct measure of the density of the Universe. Unfortunately, many other effects (eg galaxy evolution) also influence the quantities being measured, so that no technique has been implemented successfully.
a If universe is closed, “hot spots” appear larger than actual size

b If universe is flat, “hot spots” appear actual size

c If universe is open, “hot spots” appear smaller than actual size
• Size of the Universe

• Because distances to objects are measured in terms of look back time or billions of light years, the observable size of the Universe is related to the age of the Universe. We clearly cannot look back further in time than the age of the Universe.

• The 3 degree Kelvin cosmic background radiation creates an opaque wall in the Universe which we cannot see beyond. We cannot see further back in time than when the Universe was about 1 million years old.

• The age of the Universe depends on its density and its true expansion rate. Observations suggest that the Universe is between 11 and 20 billion years old.
• The Missing Mass

– It is estimated that about 95% of the mass of the Universe is non-luminous dark matter of an unknown nature. Determining the exact amount of dark matter is necessary if we are to know the ultimate fate of the Universe.

– We would also like to know what the dark matter is, since this gives us fundamental information about the bulk of matter in our universe, and hence tells us about the nature of our Universe. Astronomers hope they can determine the fate of the Universe by studying clustering and motions out to greater and greater distances.

– The nature of dark matter remains a mystery. Many different types of dark matter have been proposed. At the present time the best approach is to reject those suggestions that are inconsistent with observations.
• **Possible forms for the Dark Matter**

 – 1. Brown Dwarfs (MACHOs)
 • Stars with very low mass such that the fusion of hydrogen into helium never occurs.

 – 2. Stellar remnants
 • White Dwarfs, Neutron stars, Black holes

 – 3. Neutrinos
 – If neutrinos have mass they may contribute significantly to the mass of the Universe, since large numbers were created as the Universe formed

 – 4. Exotic particles
 • e.g. WIMPS --- Weakly interacting massive particles. Predicted by theory, but not yet o
Cosmology

Survey of Astrophysics A110

(a) **Universe #1:** slow expansion

- Distance
- Recessional velocity v_1, v_2

(b) **Universe #2:** rapid expansion

- Slower expansion at great distances (in distant past): expansion has slowed down

- More rapid expansion at great distances (in distant past): expansion has sped up

- Universe expands at a steady rate
Above orange curve:
No Big Bang
(density of matter
could never
have been
infinite)

\(\Omega_m = 0.3 \)
\(\Omega_A = 0.7 \)
(current preferred model)

Expansion is speeding up
Expansion is slowing down

\(\Omega_m = 1.0 \)
\(\Omega_A = 0.0 \)
(old standard model)

Red line:
Universe expands
at a steady rate

Solid black line:
Boundary between
perpetual expansion
and eventual
recollapse

Dashed black line:
No dark energy
(\(\Omega_A = 0 \))