Robo-AO KP
A New Era in Robotic Adaptive Optics

Reed Riddle, Christoph Baranec, Nicholas M. Law, Shrinivas R. Kulkarni, Dmitry Duev, A. N. Ramaprakash, Carl Ziegler, Rebecca M. Jensen-Clem, Dani E. Atkinson, Angelle M. Tanner, Celia Zhang, Amy Ray

AAS 227th Meeting, Kissimmee, FL
January 8th, 2016
Robo-AO Operations at Palomar

- First and only robotic AO system
- Three years of robotic scientific operations on Palomar 60”
- Most efficient AO system in the world
 - About 21 observations per hour
 - Record of 247 observations in one night
 - 18,000+ total robotic observations in ~150 nights
 - ~80 second average overhead time between science observations
 - ~20 seconds to set up AO system, plus automated LGS acquisition
 - Automatic data reduction pipeline

- 19 total science publications (+4 in submission)
 - 12 publications in 2015
 - More on the way...
• NSF directed NOAO to find other operators for KPNO 2.1m
• Caltech submitted proposal to move Robo-AO to 2.1m
• Proposal accepted!
 • Installation complete, commissioning almost complete, some early science underway
• **Robo-AO KP Team**
 - Collaboration between Caltech, U. Hawaii, UNC Chapel Hill, IUCAA
 - PI: Prof. Shri Kulkarni
 - Project Scientist: Dr. Reed Riddle
 - **Robo-AO** PI: Prof. Christoph Baranec
 - UNC Chapel Hill: Prof. Nick Law
 - Data Scientist: Dr. Dmitry Duev
 - IUCAA Lead: A. N. Ramaprakash
 - Graduate students: Rebecca Jensen-Clem, Maïssa Salama
 - Telescope operators: Amy Ray, Mark Trueblood (hiring a third)

• **1/6th of observing time granted to US community**
Robo-AO on the KPNO 2.1m

Laser guide star

Electronics & Robotic Software

Adaptive Optics System + Vis/NIR Science Instruments
Robo-AO on the KPNO 2.1m

Electronics & Robotic Software

Laser
Robo-AO on the KPNO 2.1m
Robo-AO on the KPNO 2.1m Laser guide star Adaptive Optics System + Vis/NIR Science Instruments
Robo-AO on the KPNO 2.1m

Laser guide star

Adaptive Optics System + Vis/NIR Science Instruments
Initial Kitt Peak Operations

- Installed Robo-AO in November
 - ~5 month development time
 - ~1 week to integrate hardware on telescope
 - ~2 weeks for on-sky alignment, calibration, testing, etc.
 - Operational checkout of observing system
 - 3 year science program (with possible extension)

- Not initially robotic
 - Telescope control system old, requires holding button to close dome
 - Will operate in manual-ish mode

- Telescope automation being investigated
 - Summer 2016 implementation

Complete!
Initial Kitt Peak Operations
Initial Kitt Peak Operations
Initial Kitt Peak Operations
Thank you!

http://robo-ao.org
See videos on Youtube
Like us on Facebook