We report results from the first year of observations from the Harvard/Planetary Society all-sky search for pulsed optical signals from other civilizations. To survey the Northern sky ($-20^\circ < \delta < +70^\circ$), our 1.8-meter spherical f/2.5 optical telescope images a $1.6^\circ \times 0.2^\circ$ patch of sky on two matched focal planes with a total of 1024 photomultiplier tube pixels. Each pair of pixels images the same 2.3 square arcminute patch of sky, and fast electronics filter the incoming visual band light for nanosecond pulses. Coincident optical flashes in a pair of pixels trigger one of 32 PulseNet chips (full-custom integrated circuits) to record the pulse profiles at nanosecond resolution. This experiment is an all-sky, kilopixel evolution of our targeted search. Its meridian transit survey mode requires ~150 clear nights to cover the Northern sky with ~1 minute dwell time per source point. Focus in this talk will be given to describing the capabilities of the all-sky search instrument, the first year's observations, and constraints that these observations place on the density of pulsed optical transmitters in the galaxy.