In this work we present the results of a systematic search for cometary organic matter in 18 Stardust particles from 15 tracks by transmission electron microscopy (TEM) and multi-disciplinary studies (XANES and NanoSims) of 2 of the organic-bearing particles identified. The combination of the three analytical techniques has established the presence of organic, cometary carbon in both particles. Using energy filtered and high resolution imaging (TEM) it was shown that the carbon is amorphous and rare, given that it is found in grains < 200 nm size. The XANES maps and spectra of the carbonaceous areas identified with the TEM have shown that the carbon is organic due to the presence of carbonyl (C=O) functional groups and the overlapping of carbon and nitrogen on the same grains. In addition, several different C-XANES spectra were obtained from the same particle suggesting that there is diversity in the types of carbon present in the particles, as well as a heterogeneous distribution of the carbonaceous phases within a particle. In one of the particles investigated we found five spots showing a pronounced enrichment in 15N/14N (δ^{15}N from 420 to 639 permil) that were clearly identified with the
C-rich regions. These findings show that comets have organic material and that comets probably contributed to the delivery of organic molecules to the early Earth.