Orbits and Atmospheres of Directly Imaged Exoplanets
Quinn Konopacky

Directly imaged exoplanets offer a new window into the rapidly evolving field of planet formation and evolution. The ability to separate the light of the planet from its host star is extremely advantageous for studying Jovian planetary atmospheres. The wide projected separations (~15 to 100 AU) of these planets provide insight into the orbital dynamics of long period objects. The combination of dynamical and atmospheric characterization can give clues about how these objects form. To demonstrate this new insight, I will discuss our team's results from an ongoing monitoring campaign of the HR 8799 directly imaged multi-planet system using the Keck Observatory adaptive optics system. High precision astrometry (~1 mas) has provided constraints on the orbital properties of the four HR8799 planets. Moderate resolution (R~4000) spectroscopy has given precise estimates of the planets' effective temperature, surface gravity, and composition, leading to tantalizing clues about their formation. I will also discuss the successful first light runs of the Gemini Planet Imager (GPI), and instrument designed specifically to image and characterize young, widely separated Jovian planets. I will highlight some early results with GPI and describe the upcoming GPI Exoplanet Survey (GPIES), a three year campaign that will revolutionize our understanding of this fascinating planet population.