mountain profile Institute for Astronomy University of Hawaii

Courses taught at the IfA


Ast 633: Astrophysical Techniques

This is the one core course that is required of all graduate students in the Astronomy program. It introduces fundamental conccepts that you will find yourself using throughout your PhD research. By the end of this class, you should know how the optics and detectors on telescopes (especially those on Maunakea) work, how to acquire data, and how to analyze it.
(taught 2017)

Ast 622: The Interstellar Medium

The Interstellar Medium (ISM) is the gas and dust between the stars. Stars form from it, their winds and supernova enrich and replenish it. Temperatures in the ISM range from the very hot, ~106 K, to the very cold, ~10 K. Densities span an even wider dynamic range, from less than 10-3 to greater than 106 particles per cubic centimeter. Even the highest densities, however, are far more rarefied than the best vacuums currently attainable on Earth and thus the ISM allows us to explore physical processes in unique environments. This course will discuss observations and theories of a wide range of ISM environments from pervasive diffuse, ionized gas to dense, molecular clouds and star forming regions. In the last part of the course, we will transition from interstellar to circumstellar material (i.e. disks) as this is an active area of research at the IfA.
(taught 2004, 2006, 2008, 2009, 2012, 2014, 2016)

Ast 734: Order of Magnitude Astronomy

Estimation is an essential skill for astronomy and life in general. This course will introduce students to the utility of order of magnitude calculations and practicing the ability to "think on your feet". I will give short overviews of basic physical concepts but the majority of the class time will be spent interactively, with students tackling pre-assigned problems at the whiteboard. If time permits, I will challenge the class by extending the problem or asking a new, unseen question.
(taught Spring 2015)

Ast 735: Submillimeter Astronomy in the ALMA era

This series of seminars will introduce students to radio astronomy and inteferometry. The course will be split roughly evenly between lectures on the techniques and applications of observing at submillimeter wavelengths and practical work using real data. For the latter, we will use ALMA science verification datasets and work through the associated tutorials on data reduction and analysis. Students will need a laptop computer running (Mac OS) unix or linux. The goal is for students to learn the skills of submillimeter astronomy and interferometry so as to be able to propose for SMA, ALMA, or JVLA observations in their chosen science area.
(taught Spring 2003, Spring 2013)

Geo 669: Formation of Solar Systems

How did the Earth and other planets form? How common are planets around other stars, and what are their properties? These questions are at the forefront of the earth and space sciences and are the modern manifestations of questions about our origin and uniqueness that are probably as old as human consciousness itself. Observations and measurements have almost always preceded theory in this field of inquiry, and hence this course is structured according to the three windows through which almost everything has been learned in this field: (1) astronomical observations of the process of star and planet formation; (2) measurements of early events recorded in Solar System materials, and detection and (3) characterization of planets around other stars.
(co-taught with Sasha Krot and Eric Gaidos, Spring 2006)

Ast 110: Survey of Astronomy

This is a non-mathematical, introductory class for undergraduate non-science majors. I give a broad overview of astronomy from planets to quasars. Click on the link above for the course web page.
(taught Spring 2005, Fall 2010)