4. Transport of energy: convection

- convection in stars, solar granulation
- Schwarzschild criterion for convective instability
- mixing-length theory
- numerical simulation of convection
Convection as a means of energy transport

Mechanisms of energy transport

a. radiation: \(F_{\text{rad}} \) (most important)

b. convection: \(F_{\text{conv}} \) (important especially in cool stars)

c. heat production: e.g. in the transition between solar cromosphere and corona

d. radial flow of matter: corona and stellar wind

e. sound waves: cromosphere and corona

The sum \(F(r) = F_{\text{rad}}(r) + F_{\text{conv}}(r) \) must be used to satisfy the condition of energy equilibrium, i.e. no sources and sinks of energy in the atmosphere

\[
4\pi r^2 F(r) = \text{const} = L
\]
Solar granulation

Resolved size ~ 500 km (0.7 arcsec)

$\Delta T \approx 100$ K \hspace{1cm} \nu \sim \text{few km/s}
Solar granulation

warm gas is pulled to the surface
cool dense gas falls back into the
deeper atmosphere
Convection as a means of energy transport

Hot stars (type OBA)
Radiative transport more efficient in atmospheres

CONVECTIVE CORES

Cool stars (F and later)
Convective transport more important in atmospheres (dominant in coolest stars)

OUTER CONVECTIVE ZONE

When does convection occur? → strategy

Start with an atmosphere in radiative equilibrium.

Displace a mass element via small perturbation. If such displacement grows larger and larger through bouyancy forces → instability (convection)
The Schwarzschild criterion for instability

Assume a mass element in the photosphere slowly \((v < v_{\text{sound}})\) moves upwards (perturbation) \textit{adiabatically} (no energy exchanged)

Ambient density and pressure decreases \(\rho \rightarrow \rho_a\)

mass element (‘cell’) adjusts and \textit{ expands, changes } \rho, T \textit{ inside}

2 cases:

a. \(\rho_i > \rho_a\): the cell falls back \(\rightarrow\) \textit{stable}

b. \(\rho_i < \rho_a\): cell rises \(\rightarrow\) \textit{unstable}
The Schwarzschild criterion for instability

at the end of the adiabatic expansion ρ and T of the cell: $\rho \rightarrow \rho_i$, $T \rightarrow T_i$

denoting with subscript ‘ad’ the adiabatic quantities and with ‘rad’ the radiative ones
we can substitute $\rho_i \rightarrow \rho_{ad}$, $T_i \rightarrow T_{ad}$ and $\rho_a \rightarrow \rho_{rad}$, $T_a \rightarrow T_{rad}$

the change in density over the radial distance Δx: $\Delta \rho_{ad} = \left[\frac{d\rho}{dx} \right]_{ad} \Delta x$

we obtain stability if: $|\Delta \rho_{ad}| < |\Delta \rho_{rad}|$

outwards: ρ decreases! \rightarrow density of cell is larger than surroundings,
inwards: ρ increases! \rightarrow density of cell smaller than surroundings

2 cases:

a. $\rho_{ad} > \rho_{rad}$: the cell falls back \rightarrow stable

b. $\rho_{ad} < \rho_{rad}$: cell rises \rightarrow unstable
The Schwarzschild criterion for instability

We assume that the motion is slow, i.e. with \(v \ll v_{\text{sound}} \)

\[\rightarrow \text{pressure equilibrium} \] !!!

\(\rightarrow \) pressure inside cell equal to outside: \(P_{\text{rad}} = P_{\text{ad}} \)

from the equation of state: \(P \sim \rho \ T \rightarrow \rho_{\text{rad}} \ T_{\text{rad}} = \rho_{\text{ad}} \ T_{\text{ad}} \)

\(\rightarrow \) equivalently stability if:

\[
\left| \frac{dT}{dx} \right|_{\text{ad}} > \left| \frac{dT}{dx} \right|_{\text{rad}}
\]

equivalent to old criterium

\[
\left| \frac{d\rho}{dx} \right|_{\text{ad}} < \left| \frac{d\rho}{dx} \right|_{\text{rad}}
\]
The Schwarzschild criterion for instability

equation of hydrostatic equilibrium: \(dP_{\text{gas}} = -g \, \rho(x) \, dx \)

\[P_{\text{gas}} = \left(\frac{k}{m_H \, \mu} \right) \, \rho \, T \]

\[
\frac{dT}{dx} = \frac{dT}{dP} \, \frac{dP}{dx} = \frac{dT}{dP} \, g \, \rho = \frac{dT}{dP} \, g \, \frac{m_H \, \mu}{kT} \, P = g \, \frac{m_H \, \mu}{k} \, \frac{d \ln T}{d \ln P}
\]

\(\rightarrow \) **stability** if:

\[
\left| \frac{d \ln T}{d \ln P} \right|_{\text{adh}} > \left| \frac{d \ln T}{d \ln P} \right|_{\text{rad}}
\]

Schwarzschild criterion

instability: when the temperature gradient in the stellar atmosphere is larger than the adiabatic gradient \(\rightarrow \) convection !!!
The Schwarzschild criterion for instability

to evaluate \[\frac{d \ln T}{d \ln P} \] _ad_

Adiabatic process: \(P \sim \rho \gamma \)

\(\gamma = \frac{C_p}{C_v} \)

perfect monoatomic gas which is completely ionized or completely neutral: \(\gamma = 5/3 \)

from the equation of state: \(P = \rho kT/\mu \) \(\Rightarrow \) \(P^{\gamma-1} \sim T^\gamma \)

specific heat at constant pressure, volume
\(C = dQ/dT \)
The Schwarzschild criterion for instability

\[
\left. \frac{d \ln T}{d \ln P} \right|_{ad} = \frac{\gamma - 1}{\gamma} = 1 - \frac{1}{\gamma}
\]

“simple” plasma with constant ionization $\rightarrow \gamma = 5/3$ \rightarrow \[
\left. \frac{d \ln T}{d \ln P} \right|_{ad} = 0.4
\]

changing degree of ionization \rightarrow plasma undergoes phase transition

\rightarrow specific heat capacities $dQ = C \, dT$ not constant!!

\rightarrow adiabatic exponent γ changes

\[
H \leftrightarrow p + e^- \quad \gamma \neq 5/3
\]
The Schwarzschild criterion for instability

the general case:

\[
\left| \frac{d \ln T}{d \ln P} \right|_{ad} = \frac{2 + X_{\text{ion}}(1 - X_{\text{ion}}) \left(\frac{5}{2} + \frac{E_{\text{ion}}}{kT} \right)}{5 + X_{\text{ion}}(1 - X_{\text{ion}}) \left(\frac{5}{2} + \frac{E_{\text{ion}}}{kT} \right)^2}
\]

\[X_{\text{ion}} = \frac{n_e}{n_p + n(H)} \quad \text{degree of ionization} \]

\[E_{\text{ion}} \quad \text{ionization energy} \]

for \(X_{\text{ion}} = 0 \text{ or } 1\): \[\left| \frac{d \ln T}{d \ln P} \right|_{ad} = 0.4\]

for \(X_{\text{ion}} = 1/2\) a minimum is reached

\[\left| \frac{d \ln T}{d \ln P} \right|_{ad} = 0.07\]

(example: inner boundary of solar photosphere at \(T = 9,000 \text{ K}\))

Isocontours of adiabatic gradient in (logP, logT)-plane
note that gradient is small, where H, HeI, HeII change ionization
Conditions for convection

instability when

\[
\left| \frac{d \ln T}{d \ln P} \right|_{ad} < \left| \frac{d \ln T}{d \ln P} \right|_{rad}
\]

can depend on:

1. small
2. large

1. **HOT STARS**: \(T_{\text{eff}} > 10,000 \text{ K} \)
 - H fully ionized \(\rightarrow \gamma = 5/3 \)
 - \(\left| \frac{d \ln T}{d \ln P} \right|_{ad} = 0.4 \)
 - convection NOT important

1. **COOL STARS**: \(T_{\text{eff}} < 10,000 \text{ K} \)
 - contain zones with \(X_{\text{ion}} = 0.5 \)
 - convective zones
 - \(\left| \frac{d \ln T}{d \ln P} \right|_{ad} = 0.07 \)

\(\gamma \)-effect
Conditions for convection

2. \[T^4 = \frac{3}{4} T_{\text{eff}}^4 (\bar{\tau} + \frac{2}{3}) \implies \frac{dT}{dx} \bigg|_{\text{rad}} = \frac{\bar{\kappa}}{4} \frac{3}{4} T_{\text{eff}}^4 \]

\[\frac{d \ln T}{d \ln P} \bigg|_{\text{rad}} = \frac{k}{g \mu m_H} \frac{\bar{\kappa}}{4T^3} \frac{3}{4} T_{\text{eff}}^4 = \frac{3}{16} \left(\frac{T_{\text{eff}}}{T}\right)^4 \bar{\kappa} H \approx \frac{3}{16} \frac{\pi P}{\sigma g \rho T^4 \bar{\kappa} F} \]

large (convective instability) when \(\kappa \) large
(less important: flux \(F \) or scale height \(H \) large)

Example: in the Sun this occurs around \(T \approx 9,000 \) K
because of strong Balmer absorption from H 2nd level

\(\gamma \)-effect

\(\kappa \)-effect

hydrogen convection zone in the sun
Conditions for convection

- The previous slides considered only the simple case of atomic hydrogen ionization and hydrogen opacities. This is good enough to explain the hydrogen convection zone of the sun.

- However, for stars substantially cooler than the sun molecular phase transitions and molecular opacities become important as well. This is why convection becomes more and more important for all cool stars in their entire atmospheres. The effects of scale heights also contribute for red giants and supergiants.

- Even for hot stars, helium and metal ionization can lead to convection (see Groth, Kudritzki & Heber, 1984, A&A 152, 107). However, here convection is only important to prevent gravitational settling of elements, the convective flux is small compared with the radiative flux and radiative equilibrium is still a valid condition.

\[
\left| \frac{d \ln T}{d \ln P} \right|_{ad} < \left| \frac{d \ln T}{d \ln P} \right|_{rad}
\]

1. small
2. large

\(\gamma\)-effect
\(\kappa\)-effect
If convection occurs, what changes?

- Convective energy flux in addition to radiative flux

\[F_{\text{total}} = F_{\text{convective}} + F_{\text{radiative}} = \sigma \frac{T_{\text{eff}}^4}{\pi} \]

- Temperature gradient becomes flatter

- How to calculate convective flux and new \(T(x) \)??
Calculation of convective flux: Mixing length theory

simple approach to a complicated phenomenon:

a. suppose atmosphere becomes unstable at \(r = r_0 \rightarrow \) mass element rises for a characteristic distance \(L \) (mixing length) to \(r_0 + L \)

b. the cell excess energy is released into the ambient medium

c. cell cools, sinks back down, absorbs energy, rises again, ...

In this process the temperature gradient becomes shallower than in the purely radiative case

given the pressure scale height (see ch. 2)

\[
H = \frac{kT}{g \frac{m_H \mu}{}}
\]

we parameterize the mixing length by (adjustable parameter)

\[
\alpha = \frac{L}{H} \quad \alpha = 0.5 - 1.5
\]
Mixing length theory: further assumptions

- simple approach to a complicated phenomenon:
 - d. mixing length \(L \) equal for all cells
 - e. the velocity \(v \) of all cells is equal

Note: assumptions d., e. are made ad hoc for simplicity.

There is no real justification for them
Mixing length theory

\[\Delta T = \left[\left| \frac{dT}{dr} \right|_{\text{rad}} - \left| \frac{dT}{dr} \right|_{\text{ad}} \right] \Delta r \]

> 0 under the conditions for convection

in general \hspace{1cm} \nabla_{\text{rad}} \geq \nabla \geq \nabla_{\text{ad}}

\[\Delta T^{\text{max}} = \left[\left| \frac{dT}{dr} \right|_{\text{rad}} - \left| \frac{dT}{dr} \right|_{\text{ad}} \right] l \]
Mixing length theory: energy flux

for a cell travelling with speed \(v \) the flux of energy is:

\[
\text{Flux} = \text{mass flow} \times \text{heat energy per gram}
\]

\[
\pi F_{\text{conv}} = \rho v \times dQ = \rho v C_p \Delta T
\]

Estimate of \(v \):

1. buoyancy force: \(|f_b| = g |\Delta \rho| \)
 \(\Delta \rho \): density difference cell – surroundings. We want to express it in terms of \(\Delta T \), which is known \(\rightarrow \)

2. equation of state: \[
P = \frac{\rho k T}{\mu m_H} \implies \frac{dP}{P} = \frac{d\rho}{\rho} + \frac{dT}{T} - \frac{d\mu}{\mu} \]
Mixing length theory: energy flux

in pressure equilibrium:

\[
\frac{dP}{P} = 0 = \frac{d\rho}{\rho} + \frac{dT}{T} - \frac{d\mu}{\mu}
\]

\[
d\rho = -\rho \left(\frac{dT}{T} - \frac{d\mu}{\mu} \right) = -\rho \frac{dT}{T} \left(1 - \frac{d\ln \mu}{d\ln T} \right)
\]

\[
|\Delta \rho| = \frac{\rho}{T} \Delta T \left| 1 - \frac{d\ln \mu}{d\ln T} \right|
\]

3. work done by buoyancy force:

\[
w = \int_{0}^{l} |f_b| d(\Delta r) = \int_{0}^{l} g |\Delta \rho| d(\Delta r)
\]

crude approximation: we assume integrand to be constant over Integration interval
Mixing length theory: energy flux

\[w = g \frac{\rho}{T} \left[1 - \frac{d \ln \mu}{d \ln T} \right] \left[\left| \frac{dT}{dr} \right|_{\text{rad}} - \left| \frac{dT}{dr} \right|_{\text{ad}} \right] \times \frac{1}{2} l^2 \]

4. equate kinetic energy \(\rho v^2/2 \) to work

\[v = \left[g \frac{1}{T} \left[1 - \frac{d \ln \mu}{d \ln T} \right] \right]^{1/2} \left[\left| \frac{dT}{dr} \right|_{\text{rad}} - \left| \frac{dT}{dr} \right|_{\text{ad}} \right]^{1/2} l \]

\[\pi F_{\text{conv}} = \rho v C_p \Delta T = \rho C_p \left[g \frac{1}{T} \left[1 - \frac{d \ln \mu}{d \ln T} \right] \right]^{1/2} \left[\left| \frac{dT}{dr} \right|_{\text{rad}} - \left| \frac{dT}{dr} \right|_{\text{ad}} \right]^{3/2} l^2 \]
Mixing length theory: energy flux

re-arranging the equation of state:

\[\frac{dT}{dr} = \frac{g \mu m_H}{k} \frac{d \ln T}{d \ln P} = \frac{H}{T} \frac{d \ln T}{d \ln P} \]

\[\pi F_{\text{conv}} = \rho C_p \alpha^2 T \left[\frac{g H}{1 - \frac{d \ln \mu}{d \ln T}} \right]^{1/2} \left[\frac{d \ln T}{d \ln P}_{\text{rad}} - \frac{d \ln T}{d \ln P}_{\text{ad}} \right]^{3/2} \]

Note that \(F_{\text{conv}} \sim \alpha^2 \), \(\alpha \) is a free parameter !!!!!!!

Note that \(F_{\text{conv}} \sim T^{1.5} \), whereas \(F_{\text{rad}} \sim T_{\text{eff}}^4 \)

\[\rightarrow \text{convection not effective for hot stars} \]
Mixing length theory: energy flux

We finally require that the total energy flux

$$\pi F = \pi F_{\text{rad}} + \pi F_{\text{conv}} = \sigma T_{\text{eff}}^4$$

Since the T stratification is first done on the assumption:

$$\pi F_{\text{rad}} = \sigma T_{\text{eff}}^4$$

a correction $\Delta T(\tau)$ must be applied iteratively to calculate the correct T stratification if the instability criterion for convection is found to be satisfied.
Mixing length theory: energy flux

comparison of numerical models with mixing-length theory results for solar convection

Abbett et al. 1997
3D Hydrodynamical modeling

Mixing length theory is simple and allows an analytical treatment.

More recent studies of stellar convection make use of radiative-hydrodynamical numerical simulations in 3D (account for time dependence), including radiation transfer. Need a lot of CPU power.

Nordlund 1999

Freitag & Steffen
Confronting 3D models of the solar photosphere with observations

Matthias Steffen (AIP)
Sven Wedemeyer-Böhm (Oslo)
Hans-Günter Ludwig (Paris)
Elisabetta Caffau (Paris)
Bernd Freytag (Lyon)

2009, Annual Meeting
German Astronomical Society
Modeling stellar surface convection

Essential physical ingredients:

- **3D Hydrodynamics**
 - Time-dependent, compressible, transonic flows in a highly stratified medium (shocks)

- **Thermodynamics**
 - Realistic EOS accounting for partial ionization

- **3D Radiative transfer**
 - Energy balance due to radiative heating / cooling
 - Realistic opacities (T, P, λ)

CO6BOLD → Numerical solution

Advanced: Rotation, magnetic fields, NE physics

Steffen et al., 2009
“Box-in-a-star” setup

Cartesian simulation box with periodic side boundaries

Solar granulation

Artwork © Å. Nordlund 1995

Steffen et al., 2009
Realistic radiative hydrodynamics models of stellar surface convection

$T_{\text{eff}}, \log g, \varepsilon_i$

No additional free physical parameters ($\alpha_{\text{MLT}}, \xi_{\text{mic}}, \xi_{\text{mac}}$)

Ab initio models of stellar surface convection designed for direct comparison with real stars (synthetic spectra for precision abundance determinations)

Steffen et al., 2009
3D Hydrodynamical modeling

Steffen et al. 2009

Salar Granulation: d3g157g44n94
Intensity & specific entropy
Time= 299.8 min

dirme: 15.8 %

animation
Solar Granulation

Intensity & specific entropy

Time = 289.8 min
dlrms: 15.8 %

Steffen et al.
2009

animation
SST observation of the quiet solar granulation

Non-magnetic COBOLD numerical simulation

SST: 15"x15", λ 4364 Å
(Courtesy Mats Carlsson 2004)

Simulation: 400x400x165 cells
(Steffen & Caffau 2009)

Steffen et al., 2009
Intensity contrast of the solar granulation

\[\delta I_{\text{rms}} \equiv \sqrt{\frac{1}{N} \sum_{x,y} \left(I(x, y) - \langle I \rangle_{x,y} \right)^2} \]

Steffen et al., 2009
Image degradation

Observations need to be corrected for degradation due to:
1. terrestrial atmosphere
2. instrumental effects

space-borne observations: only instrumental degradation

Solar Optical Telescope onboard Hinode

BFI:
- blue (450 nm)
- green (555 nm)
- red (668 nm)

Steffen et al., 2009
Summary: δI_{rms} at disk center

(After Wedemeyer-Böhm & Rouppe van der Voort 2009)

<table>
<thead>
<tr>
<th>δI_{rms}</th>
<th>λ [nm]</th>
<th>Original Observation</th>
<th>Corrected Observation</th>
<th>Original Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>450</td>
<td>12.8 ± 0.5</td>
<td>26.7 ± 1.3</td>
<td>25.0 ± 0.1</td>
</tr>
<tr>
<td>green</td>
<td>555</td>
<td>8.3 ± 0.4</td>
<td>19.4 ± 1.4</td>
<td>18.1 ± 0.1</td>
</tr>
<tr>
<td>red</td>
<td>668</td>
<td>6.2 ± 0.2</td>
<td>16.6 ± 0.7</td>
<td>13.8 ± 0.1</td>
</tr>
</tbody>
</table>

Now corrected observations close to simulations

Steffen et al., 2009
Center-to-limb variation
Original observation vs. degraded simulation

- Observed image sub-regions sorted into bins of $\Delta \mu = 0.05$

- Grey shades: contrast histograms in μ bin
- Red dots: maxima of histograms
- Blue symbols: degraded synthetic contrast

Steffen et al., 2009
3D Hydrodynamical modeling

Gas temperature distribution in dynamic solar photosphere as a function of depth

Warm colors: abundance of gas
Cold colors: shortage of gas

Asplund, 2005

Asplund, M. 2005
Temperature stratification as a function of optical depth

Center to limb variation of intensity as a function of wavelength

Observed and theoretical CLV of continuum

- Observation Neckel & Labs 1984
- ATLAS $\alpha_{\text{MLT}}=1.25$
- LHD $\alpha_{\text{MLT}}=1.25$

Steffen et al., 2009
CLV of continuum: 3D simulation and observation

\[\frac{l(\mu)}{l(\mu=1)} \]

\[\lambda \text{ [nm]} \]

- \(\mu = 0.92 \)
- \(\mu = 0.74 \)
- \(\mu = 0.48 \)
- \(\mu = 0.17 \)

○ Observation Neckel & Labs 1984

- 3D radiation hydrodynamics, ODF
 (1200 x 12 wavelength intervals)

Steffen et al., 2009
CLV: 3D simulation and semi-empirical HM model

\[\frac{I(\mu)}{I(\mu=1)} \]

\(\mu = 0.92 \)
\(\mu = 0.74 \)
\(\mu = 0.48 \)
\(\mu = 0.17 \)

\(\lambda [\text{nm}] \)

- Observation Neckel & Labs 1984
- Holweger-Müller, ODF
- 3D radiation hydrodynamics, ODF

Steffen et al., 2009
3D spectral line formation

- Large variations across the granulation pattern
- Spatial averaging: net blueshift, line asymmetry

Steffen et al., 2009
Asplund, M. 2005
Center-to-limb variation of [OI] 630 nm

- $A(O) = 8.775$
- $A(Ni) = 5.927$
- no ξ_{micro}, ξ_{macro}

Steffen et al., 2009
Iron abundances from individual iron lines with different excitation potential

- Fe I
- Fe II

Solar element abundances

<table>
<thead>
<tr>
<th>Element</th>
<th>1D (old)</th>
<th>3D (new)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>10.98±0.01</td>
<td>10.98±0.01</td>
</tr>
<tr>
<td>C</td>
<td>8.56±0.06</td>
<td>8.47±0.05</td>
</tr>
<tr>
<td>N</td>
<td>7.96±0.06</td>
<td>7.87±0.05</td>
</tr>
<tr>
<td>O</td>
<td>8.87±0.06</td>
<td>8.73±0.05</td>
</tr>
<tr>
<td>Ne</td>
<td>8.12±0.06</td>
<td>7.97±0.10</td>
</tr>
<tr>
<td>Mg</td>
<td>7.62±0.05</td>
<td>7.64±0.04</td>
</tr>
<tr>
<td>Si</td>
<td>7.59±0.05</td>
<td>7.55±0.05</td>
</tr>
<tr>
<td>S</td>
<td>7.37±0.11</td>
<td>7.16±0.03</td>
</tr>
<tr>
<td>Ar</td>
<td>6.44±0.06</td>
<td>6.44±0.13</td>
</tr>
<tr>
<td>Fe</td>
<td>7.55±0.05</td>
<td>7.44±0.04</td>
</tr>
</tbody>
</table>

X = log\{N(X)/N(H)\} + 12

Asplund, 2009
3D Hydrodynamical modeling for low metallicity G dwarfs

Strong effects of metallicity

--- model assuming mixing length theory

Asplund, M. 2005
3D convection simulation Betelgeuze

Large pressure scale height → huge convective cells

Chiavassa et al. 2011
Temperature structure: 3D vs. MARCS

Chiavassa et al. 2011
3D effects on TiO and SED

THE TEMPERATURES OF RED SUPERGIANTS

Ben Davies1,2,3, Rolf-Peter Kudritzki4, Bertrand Plez5, Scott Trager6, Ariane Lançon7, Zach Gazak8, Maria Bergemann8, Chris Evans9, Andrea Chiavassa10

1 Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead, CH41 1LD, UK.
2 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK.
3 School of Physics & Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
4 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI, 96822, USA
5 Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS, F-34095 Montpellier, France
6 Kapteyn Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
7 Observatoire astronomique and CNRS UMR 7550, Université de Strasbourg, Strasbourg, France
8 Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str.1, D-85741 Garching, Germany
9 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ, UK; Institute for Astronomy, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ, UK and
10 Université de Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, CNRS Laboratoire Lagrange, BP 4229, 06304, Nice Cedex 4, France

Draft version January 17, 2013

ABSTRACT

We present a re-appraisal of the temperatures of Red Supergiants (RSGs) using their optical and near-infrared spectral energy distributions (SEDs). We have obtained data of a sample of RSGs in the Magellanic Clouds using VLT+XSHOOTER, and we fit MARCS model atmospheres to different regions of the spectra, deriving effective temperatures for each star from (a) the TiO bands, (b) line-free continuum regions of the spectral energy distributions (SEDs), and (c) the integrated fluxes. We show that the temperatures derived from fits to the TiO bands are systematically lower than the other two methods by several hundred Kelvin. The TiO fits also dramatically over-predict the flux in the near-IR, and imply extinctions which are anomalously low compared to neighbouring stars. In contrast, the SED temperatures provide good fits to the fluxes at all wavelengths other than the TiO bands, are in agreement with the temperatures from the flux integration method, and imply extinctions consistent with nearby stars. After considering a number of ways to reconcile this discrepancy, we conclude that 3-D effects (i.e. granulation) are the most likely cause, as they affect the temperature structure in the upper layers where the TiO lines form. The continuum, however, which forms at much deeper layers, is apparently more robust to such effects. We therefore conclude that RSG temperatures are much warmer than previously thought. We discuss the implications of this result for stellar evolution and supernova progenitors, and provide relations to determine the bolometric luminosities of RSGs from single-band photometry.

Subject headings: Stars: fundamental parameters, Stars: atmospheres, Stars: late-type, Stars: mas-