Not so cool...
red supergiants
and
the Hayashi-limit
of
massive stars

Rolf Kudritzki
in collaboration with

Ben Davies
Liverpool John Moores University
in collaboration with

Bertrand Plez
University
Montpellier 2
in collaboration with

Maria Bergemann
MPIA Heidelberg
in collaboration with

Zach Gazak
IfA
our nearest RSG neighbors...
our nearest RSG neighbors...
THE TEMPERATURES OF RED SUPERGIANTS

Ben Davies1,2,3, Rolf-Peter Kudritzki4, Bertrand Plez5, Scott Trager6, Ariane Lançon7, Zach Gazak4, Maria Bergemann8, Chris Evans9,10, and Andrea Chiavassa11

1 Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead CH41 1LD, UK
2 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
3 School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
4 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
5 Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS, F-34095 Montpellier, France
6 Kapteyn Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
7 Observatoire Astronomique and CNRS UMR 7550, Université de Strasbourg, F-67000 Strasbourg, France
8 Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany
9 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
10 Institute for Astronomy, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
11 CNRS Laboratoire Lagrange, Université de Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, BP 2229, F-06304 Nice Cedex 4, France

Received 2012 November 15; accepted 2013 February 8; published 2013 March 18

ABSTRACT

We present a re-appraisal of the temperatures of red supergiants (RSGs) using their optical and near-infrared spectral energy distributions (SEDs). We have obtained data of a sample of RSGs in the Magellanic Clouds using VLT+XSHOOTER, and we fit MARCS model atmospheres to different regions of the spectra, deriving effective temperatures for each star from (1) the TiO bands, (2) line-free continuum regions of the SEDs, and (3) the integrated fluxes. We show that the temperatures derived from fits to the TiO bands are systematically lower than the other two methods by several hundred kelvin. The TiO fits also dramatically overpredict the flux in the near-IR, and imply extinctions which are anomalously low compared to neighboring stars. In contrast, the SED temperatures provide good fits to the fluxes at all wavelengths other than the TiO bands, are in agreement with the temperatures from the flux integration method, and imply extinctions consistent with nearby stars. After considering a number of ways to reconcile this discrepancy, we conclude that three-dimensional effects (i.e., granulation) are the most likely cause, as they affect the temperature structure in the upper layers where the TiO lines form. The continuum, however, which forms at much deeper layers, is apparently more robust to such effects. We therefore conclude that RSG temperatures are much warmer than previously thought. We discuss the implications of this result for stellar evolution and supernova progenitors, and provide relations to determine the bolometric luminosities of RSGs from single-band photometry.
red supergiants

Brightest stars at infrared light: \(-8 \geq M_J \geq -11\) mag

Final phase of massive star evolution at Hayashi - limit of fully convective stars

Progenitors of core collapse supernovae

Infrared beacons for abundance studies: individual RSGs in galaxies out to the Coma cluster (TMT and E-ELT)
RSG - SED: $T_{\text{eff}} = 3400K$

MARCS model atmosphere, Gustafsson et al., 2008; Plez, 2011
Why T_{eff} of Hayashi-limit important?

- bolometric correction
- luminosity
- mass
- age of clusters
- age of populations
- abundance studies
- reddening, extinction
- SN progemitors

Pioneering work on T_{eff} by Emily Levesque & Phil Massey
T_{eff} from BVRI SED and TiO-bands

$T_{\text{eff}} = 3500 \text{ K}$

$A_v = 4.18$

Model = 3500g–0.5

MARCS Model Atmospheres Gustafsson et al. 2008
T_{eff} from BVRI SED and TiO-bands

$T_{\text{eff}} = 3625$ K

T_{eff} from BVRI SED and TiO-bands

$T_{\text{eff}} = 3750$ K

T_{eff} from BVRI SED and TiO-bands

$T_{\text{eff}} = 4000 \text{ K}$

T_{eff} vs. spectral type

However

- TiO-method **misses** important part of SED - J, H, K
- does NIR give the same answer ???
- our J-band spectroscopy gives higher Teff
Teff = 3400K

B, V, R, I, TiO
However

- TiO-method misses important part of SED – J, H, K
- does NIR give the same answer ???
- our J-band spectroscopy gives higher Teff

ESO VLT XShooter spectra of 25 LMC/SMC RSGs

XShooter: simultaneous spectral coverage (R ~ 6000) from 0.35 to 2.4 µ (U-band to K-band)

- check TiO-method for Teff
- test J-band spectroscopy at low metallicity
Galaxy
(Solar metallicity)

Large Magellanic Cloud
(0.4x Solar)

Small Magellanic Cloud
(0.2x Solar)

XSHOOTER (VLT instrument)
$T_{\text{eff}} = 3560 \, \text{K}$

$E(B-V) = 0.10 \, \text{mag}$

TiO - fit

$T_{\text{eff}} = 3560 \, \text{K}$

$E(B-V) = 0.10 \, \text{mag}$
$T_{\text{eff}} = 3560$ K
$E(B-V) = 0.10$ mag

TiO - fit
$T_{\text{eff}} = 4280 \text{ K}$

$E(B-V) = 0.47 \text{ mag}$

SED - fit

700 K hotter !!!

$T_{\text{eff}} = 4280 \text{ K}$

$E(B-V) = 0.47 \text{ mag}$
$T_{\text{eff}} = 4280$ K

$E(B-V) = 0.47$ mag
$$T_{\text{eff}} = 3620 \text{ K}$$

$$E(B-V) = 0.10 \text{ mag}$$
$T_{\text{eff}} = 3620 \text{ K}$

$E(B-V) = 0.10 \text{ mag}$
SED - fit

$T_{\text{eff}} = 4200 \text{ K}$

$E(B-V) = 0.40 \text{ mag}$

600 K hotter !!!

SED - fit

$T_{\text{eff}} = 4200 \text{ K}$

$E(B-V) = 0.40 \text{ mag}$

lambda (micron)
T_{eff} discrepancy of MARCS model fits

- T_{eff} from full SED-fit
 - ~ 500 K hotter than TiO-fit

- TiO-fit – reproduces TiO features and BVRI flux with low $E(B-V) \sim 0.1$ mag
 - fails at JHK

- SED-fit – reproduces BVRIJHK flux with high $E(B-V) \sim 0.4$ mag
 - fails with TiO features
A more model independent approach....

Definition of T_{eff}

\[
\sigma T_{\text{eff}}^4 = \pi \int_0^\infty F_\lambda^{\text{obs}} \, d\lambda
\]

Observed flux

\[
S_\lambda^{\text{obs}} = (R_*/d)^2 \pi F_\lambda^{\text{obs}}
\]

If $(R_*/d)^2$ is known

Observed integral over F_λ^{obs} yields T_{eff} independent of model atmosphere
T_{eff} from flux integration method (FIM)

$$S_{\lambda}^{\text{obs}} = (R_*/d)^2 \pi F_{\lambda}^{\text{obs}}$$

use model fluxes only at longest wavelength λ_0

T_{eff} → use $F_{\lambda_0}^{\text{model}}(T_{\text{eff}})$ at λ_0 and

$$S_{\lambda_0}^{\text{obs}} = (R_*/d)^2 \pi F_{\lambda_0}^{\text{model}}$$

$\sigma T_{\text{eff,new}}^4 = \pi \int_0^\infty F_{\lambda}^{\text{obs}} d\lambda$ → F_{λ}^{obs} → S_{λ}^{obs} and $(R_*/d)^2$

for large λ_0 → $F_{\lambda_0}^{\text{model}}(T_{\text{eff}}) \sim T_{\text{eff}}, x \approx 1$

method converges for $x < 4$
normalization λ_0
T_{eff} from flux integration method (FIM)

\[S_{\lambda}^{\text{obs}} = (R_*/d)^2 \pi F_{\lambda}^{\text{obs}} \]

use model fluxes only at longest wavelength λ_0

\[S_{\lambda_0}^{\text{obs}} = (R_*/d)^2 \pi F_{\lambda_0}^{\text{model}} \]

\[\sigma T_{\text{eff},\text{new}}^4 = \pi \int_{0}^{\infty} F_{\lambda}^{\text{obs}} d\lambda \]

\[F_{\lambda}^{\text{obs}} \quad \text{and} \quad (R_*/d)^2 \]

for large λ_0 \quad $F_{\lambda_0}^{\text{model}}(T_{\text{eff}}) \sim T_{\text{eff}}^x, x \approx 1$

method converges for $x < 4$
interstellar reddening and FIM

Reddening: \(E(B-V)_i \)
\[A_{\lambda,i} = R_{\lambda} E(B-V)_i \]

De-redden:
\[S_{\lambda}^{obs} \rightarrow S_{\lambda}^0 \]

Use:
\[F_{\lambda_0}^{model}(T_{eff}) \text{ at } \lambda_0 \]
\[S_{\lambda_0}^0 = (R_*/d)^2 \pi F_{\lambda_0}^{model} \]

Minimum:
\[\chi_i^2 = \frac{1}{n} \sum_{j=1}^{n} \left(\frac{F_{\lambda_j}^0 - F_{\lambda_j}^{model}}{\sigma_j} \right)^2 \]
\[E(B-V), T_{eff} \]
FIM \rightarrow T_{\text{eff}}
E(B-V) = 0.4 \text{mag}
interstellar reddening and FIM

reddening \[E(B - V)_i \]
\[A_{\lambda,i} = R_{\lambda} E(B - V)_i \]
de-redden
\[S_{\lambda}^{\text{obs}} \rightarrow S_{\lambda}^0 \]

use \[F_{\lambda_0}^{\text{model}}(T_{\text{eff}}) \] at \(\lambda_0 \) and
\[S_{\lambda_0}^0 = (R_*/d)^2 \pi F_{\lambda_0}^{\text{model}} \]

\[\sigma T_{\text{eff,new}}^4 = \pi \int_0^\infty F_{\lambda}^0 d\lambda \]

\[\chi_i^2 = \frac{1}{n} \sum_{j=1}^{n} \left(\frac{F_{\lambda_j}^0 - F_{\lambda_j}^{\text{model}}}{\sigma_j} \right)^2 \]

minimum \[E(B - V), T_{\text{eff}} \]

\[(R_*/d)^2 \]
FIM - fit

$T_{\text{eff}} = 4200 \, \text{K}$

$E(B-V) = 0.36 \, \text{mag}$
$T_{\text{eff}} = 4020$ K
$E(B-V) = 0.32$ mag
Flux integration method - FIM

- FIM result is also model dependent
- but model fluxes used only at two wavelengths to constrain $E(B-V)$ and R/d
- Model independent lower T_{eff} limits at low $E(B-V)$
change in HRD
3D convection simulation Betelgeuze

Large pressure scale height → huge convective cells

Chiavassa et al. 2011
Temperature structure: 3D vs. MARCS

Chiavassa et al. 2011
3D effects on TiO and SED

1-D model which fits visual spectrum of 3D-model fails in the near-IR \(\rightarrow\) consequences for Teff determination !!!

Figure 6. Analysis of the 3D \textit{CO}^{5}\textit{BOLD} RSG spectrum of Chiavassa et al. (2011) with the 1D MARCS models. The left panel shows the 3D spectrum (black) along with the fit to the TiO bands (green), yielding a best-fit \(T_{\text{eff}} = 3600\) K. The right panel shows that this fit overpredicts the flux at the \(H\)-hump, and in the \(K\) band. Meanwhile, a fit to the NIR continuum regions (magenta) gives a higher temperature of 3800 K, while underpredicting the strengths of the TiO bands. This mimics the behavior seen in our spectra of RSGs in the Magellanic Clouds (see Figure 9).

(A color version of this figure is available in the online journal.)

from Davies, Kudritzki et al., 2013, ApJ 767, 3