36.05.07 The Infrared Multiple System GL 437. C.G.
WYNN-WILLIAMS, E.E. BECKLIN, R. CAPPS, Inst. for
Astronomy, U. of Hawaii; S.G. KLEINMANN, M.I.T.; C.A.
BEICHMAN, Caltech; and J.R. SHAKESHAFT, U. Cambridge
-GL 437 is a 15'' diameter group of infrared sources
embedded near the front side of a molecular cloud
(Kleinmann et al., Ap. J. 215, L79). We have performed
1.2-25 μm photometry on the individual objects using
the 2.2-m UK and 3-m IRTF telescopes on Mauna Kea, and
have mapped the radio emission using the 5-km telescope
and the V.L.A. Despite their probable simultaneous
origin, the infrared sources have very different prop-
eries. All the thermal radio emission comes from a
2 arcsec diameter HII region that is coincident with
the western infrared source; this is also the most lumin-
ous object at λ>10μm. The other two compact objects
have energy distributions characteristic of infrared pro-
tostars like W3-IRS 5. Narrow bandwidth mapping of the
region indicates that the relative strength of the
unidentified 3.3-μm emission feature is highest in the
vicinity of the HII region and in the outer regions of
extended infrared emission. We discuss the implication
of this result for scattering and fluorescence theories