Dr C. G. Wynn-Williams. Extragalactic objects are generally faint at infrared wavelengths. All the sources we know about were found as a result of a specific observation, rather than as a result of an unbiased search. Consequently there are strong selection effects in the type of objects studied. Emission from heated dust grains is found from some nearby spiral galaxies, including our own, and from Type II Seyfert galaxies. On the other hand variable non-thermal emission, probably synchrotron radiation, is emitted by Type I Seyfert galaxies and by quasars. The most useful work that UKIRT can do both now and in the post-IRAS era is detailed studies of these objects. Accurate sizes and positions are needed, since many extragalactic objects are extended on a scale of a few arc seconds. Photometric observations of energy distributions and variability will help to distinguish thermal from non-thermal processes, as will polarimetric studies. Spectroscopic observations also hold great promise; infrared spectra of M82, for example, now allow us to study hydrogen emission lines, ionic fine-structure lines, molecular absorption features and dust emission features in the optically-invisible nucleus. The high spatial resolution and sensitivity of UKIRT make it an excellent telescope for use in extragalactic research.