| Name: ________________________ | Due 11/07 | ID Number: ________________________ |
Consider a star which starts out with a mass of 20.0 M
of pure hydrogen (H). (Note:
this initial composition and some of the subsequent reactions have
been simplified for this question!) By the end of its life, the star
has the structure shown in the diagram at right, with an iron
(Fe) core of 1.4 M
,
surrounded by 0.6 M
of
sulfur (S), 1.5 M
of
oxygen (O), 2.5 M
of
helium (He), and 14.0 M
of unburned hydrogen.
|
1. During the star's entire lifetime, how much helium
was produced in nuclear reactions (including helium which has
since been burned in other reactions)? Give your answer in
units of solar mass (M
2. How much oxygen was produced in nuclear reactions (again, including oxygen burned subsequently)?
3. How much sulfer was produced in nuclear reactions (again, including sulfer burned subsequently)?
4. How much iron was produced in nuclear reactions?
|
|
At each stage of nuclear burning, a tiny fraction of the mass is converted to energy. The table below lists the fractions converted at each of the nuclear reactions taking place in this star.
| Reaction | 4H -> He | 4He -> O | 2O -> S | 2S -> Fe |
| Fraction | 0.00717 | 0.00097 | 0.00055 | 0.00030 |
For example, when 1 M
of iron is produced by
the reaction 2S -> Fe
, just 1 M
× 0.00030 = 0.00030 M
of mass is converted to
energy. (These fractions are small enough that I've ignored them in
describing the star's final structure; that's why the final mass adds
up to exactly 20.0 M
).
5. During the star's life, how much mass was converted to energy by the reaction 2S -> Fe ?
6. How much mass was converted to energy by the reaction 2O -> S ?
7. How much mass was converted to energy by the reaction 4He -> O ?
8. How much mass was converted to energy by the reaction 4H -> He ?
9. Finally, when the iron core collapses, gravity converts
0.2 M
of` mass
to energy. How does this compare to the total amount of mass
converted to energy by nuclear reactions?
|
Joshua E. Barnes
(barnes@ifa.hawaii.edu)
Last modified: October 30, 2006 http://www.ifa.hawaii.edu/~barnes/ast110_06/homework/hw10.html |
|