1. (a) The Dyson Sphere is straightforward; since all the radiation emitted by the star is re-radiated from the outer surface, we have

\[L_* = L_{eb} = 4\pi R^2 \sigma_{SB} T^4 \]

So

\[R = \sqrt{L_* / 4\pi \sigma_{SB} T^4} \]

\[L_* = 3.8 \times 10^{26} \text{ Jy m}^{-2} \text{ s}^{-1} \quad T = 290 \text{ K} \]

\[R \approx 2.75 \times 10^{10} \text{ m} \approx 1.83 \text{ AU} \]

(b) A Dyson Sphere would be a strong source of IR radiation. The peak of the black-body spectrum can be calculated using Wien's law:

\[\lambda_{\text{max}} T = 2.9 \times 10^6 \text{ nm K}, \quad \text{so} \quad \lambda_{\text{max}} \approx \frac{2.9 \times 10^6 \text{ nm}}{T} \approx 10^4 \text{ nm} \]

for \(T = 290 \text{ K} \). This is in the mid-infared (\(\lambda_{\text{max}} \approx 10 \text{ micron} \)).

(c) To solve this problem you need the albedo of the rings. For simplicity, assume \(a = 0 \). There are two ways to find an answer: (i) work out the heating and cooling for the entire ring (which is very hard), or (ii) notice that any patch of surface area \(A \) has the same temperature as the whole. The second method is easier.

Assume the patch is facing the star at a distance \(R \).

The total energy input per unit time is

\[W = A (1-a) F(R) = A \frac{L_*}{4\pi R^2} \quad \text{(for} \ a = 0) \]

The total energy output is

\[L = 2A \sigma_{SB} T^4 \]

where the factor of 2 appears because both sides radiate.

(more)
1. (c) cont: Setting \(W = L \) and solving for \(R \):
\[
A \frac{L}{4\pi R^2} = 2 \pi \sigma_{SB} T^4
\]
\[
\Rightarrow R = \sqrt{\frac{L}{8 \pi \sigma_{SB} T^4}}
\]
Notice that \(A \) cancels out—it doesn't matter how big the patch was—and that this \(R \) is a factor of \(\frac{1}{2} \) smaller than part (a). That's because the patch rediscovers from both sides! For the given \(L = 1 \) and \(T \), we get
\[
R \approx 1.94 \times 10^3 \text{ m} \approx 1.29 \text{ AU}.
\]

2. (a) For planets in the solar system, the equilibrium temp. is
\[
T_p = 279 K \left(1 - a_p\right)^{\frac{1}{4}} \left(1 \text{AU}/r\right)^{\frac{1}{2}}
\]
Plugging in \(r = 30.1 \text{ AU} \), \(a_p = 0.31 \) yields
\[
T_p \approx 46 K
\]
(b) The critical temp. for molecules of mass \(m_m \) to escape is
\[
T_{cr} \approx \frac{1}{54} \frac{G M_p}{R_p} \frac{m_m}{k_B} \approx 1.2 \times 10^3 K
\]
where \(M_p = M_N \), \(R_p = R_N \), \(m_m = m_{H_2} \), and \(G \) and \(k_B \) are given in front of the book.

(c) Since \(T_p < 1.2 \times 10^3 K \), hydrogen will not escape from Neptune!

(d) Triton's equilibrium temp., due to its high albedo, is \(T_t \approx 32 K \). However, due to its smaller mass, the critical temp. for \(H_2 \) to escape is \(T_{cr} \approx 4.8 K \). Thus, Triton cannot retain \(H_2 \) molecules.

(more)
3. The m.f.p is
\[l = \frac{1}{4\pi \Gamma_m^2 n} \]

(a) For \(\Gamma_m = \Gamma_{N_2} \approx 2 \times 10^{-10} \text{ m}, \) and \(n \approx 2.5 \times 10^{23} \text{ m}^{-3} \),
\[l \approx 8 \times 10^{-8} \text{ m} \]

so a \(N_2 \) molecule can travel about 200 times its own diameter before having a collision.

(b) On the Moon, use \(\Gamma_m = \Gamma_{Ar} = 1 \times 10^{-10} \text{ m} \) and \(n \approx 2.5 \times 10^{10} \text{ m}^{-3} \) to get
\[l \approx 3.2 \times 10^{-7} \text{ m} \]

This is \(\sim 10 \) times the Moon's radius, so the \(Ar \) atom travel ballistically (i.e., along conic sections).