Extremophiles & Life in Extreme Environments
Karen Meech
With input from: Bob Bowers, Doug LaRowe

Green House Effect: 2 Key Points
- Energy has to get in
 - It does not matter what wavelength
 - Short wavelengths are most effective (most energy)
 - The energy heats the surface of the planet (how much depends on albedo)
- Infrared radiation (heat) has to be trapped
 - Much or all of IR region of atmosphere has to be blocking light

Early Earth & Solar System Lectures
- Understanding how to build a habitable world & how it evolved
 - When did Earth form? When did atmosphere and oceans form?
 - When did life originate on Earth (what evidence)?
 - What were the 4 major epochs in Earth history and how are they characterized?
- The chemistry of the atmosphere can regulate planetary temperature, and environmental conditions on the surface that may make it more or less habitable to life. There is a lot of interaction between life, atmosphere and geology, and we don’t fully understand all the feedback. Human affects cannot be fully predicted.
- We need to understand what life requires and how this relates to a habitable environment - and what are considered extremes.

Review of Essentials from Life Requirements & Origins
- We don’t have a consensus on the definition of life
 - Life requires water, energy, produces waste, replicates and evolves
 - Life is Carbon based (carbon has the ability to make complex molecules)
 - Life occurs in a microQenvironment (cell)
- Steps required in origin of life:
 - creating monomers (organic building blocks), creating compartments, creating long complex molecules (polymers), creating metabolic networks (E production)
- Quest for the origin of life
 - Most of life on earth through time has been microbial ➔ not leave many fossils (biomarkers)
 - Phylogenetic trees ➔ expressing relatedness of life
 - 3 major groupings of life: Eukarya (nucleated cells), Archaea (no nucleus), bacteria

Life at the Extremes
- What environmental factors are important for classification of the boundaries of life?
 - Water availability
 - Temperature
 - Pressure
 - Salinity
 - pH
 - Availability of energy
 - Radiation environment
- Classification of Microorganisms related to habitats
- The Energy of life
- Extreme Environments and their residents on Earth
- Where might we look for life on other planets?

Extreme Habitats & Organisms
- Life has occupied every possible niche on Earth
 - Two key habitability markers: water and energy
 - Explore the environments and how organisms take advantage of habitability
 - This gives clues to other habitable solar system environments
- Extremophile
 - Life living in an “extreme” environment (to us)

<table>
<thead>
<tr>
<th>Microbe class</th>
<th>T tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychrophiles</td>
<td>-10 to -20°C</td>
</tr>
<tr>
<td>Mesophiles</td>
<td>10 to 50°C</td>
</tr>
<tr>
<td>Thermophiles</td>
<td>40 to 70°C</td>
</tr>
<tr>
<td>Hyperthermophiles</td>
<td>> 80°C</td>
</tr>
</tbody>
</table>

Arrows show T limits for plant and animal life
Making a Living in the Microbial World

- **Metabolism Definition**
 - The chemical processes that occur within a living organism in order to maintain life
 - Metabolism makes the molecules life uses

- **Redox Reactions**
 - Chemical energy is stored in high-energy electrons that are transferred from one atom to another
 - Oxidation – loss of electrons
 - Reduction – gain of electrons

ATP – molecule that life uses for energy storage

Making a Living in the Microbial World

- **What do microbes do? Catalyze reactions**
 - Anabolism – constructs molecules from smaller units → requires E
 - Synthesize biomolecules, polymerization, maintain membranes
 - Catabolism – breaking down molecules to release energy
 - Metabolism = Catabolism + Anabolism

Metabolic Sources: Energy for Life

- **Autotrophs**
 - Produce food
 - Photoautotrophs: photosynthesis – plants convert CO₂, H₂O and sunlight to sugar (glucose) and O₂
 - Chemoautotrophs – make energy from chemicals

- **Heterotrophs**
 - Feeders

Microbial metabolic diversity

- **Constraints on Metabolism**
 - Nutrients
 - Trace metals
 - Energy available
 - Environment: T, Pressure, salinity

- **Gibbs Energy**
 - Amount of chemical energy available

Quantifying the Metabolic process

- **e-Donors**
 - Organics
 - H₂
 - NH₄⁺
 - H₂S
 - Fe²⁺
 - CH₄

- **e-Acceptors**
 - O₂
 - SO₄²⁻
 - NO₃⁻
 - Fe(III)
 - CO₂
 - Mn(IV)
Potential Microbial Metabolic Processes

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Electron (energy) donor</th>
<th>Electron acceptor</th>
<th>C source</th>
<th>Metabolic process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic</td>
<td>H_2</td>
<td>O_2</td>
<td>CO_2</td>
<td>H_2 oxidation</td>
</tr>
<tr>
<td></td>
<td>H_2S, S^0, SO_4^{2-}, $S_2O_3^{2-}$</td>
<td>O_2</td>
<td>CO_2</td>
<td>S oxidation</td>
</tr>
<tr>
<td></td>
<td>Fe^{2+}</td>
<td>O_2</td>
<td>CO_2</td>
<td>Fe oxidation</td>
</tr>
<tr>
<td></td>
<td>Mn^{2+}</td>
<td>O_2</td>
<td>CO_2</td>
<td>Mn oxidation</td>
</tr>
<tr>
<td></td>
<td>NH_4^+, NO_2^-</td>
<td>O_2</td>
<td>CO_2</td>
<td>Nitritification</td>
</tr>
<tr>
<td></td>
<td>CH_4 & other C-1 compounds</td>
<td>O_2</td>
<td>CH_4, CO_2, CO</td>
<td>Methane (C-1) oxidation</td>
</tr>
<tr>
<td>Anaerobic</td>
<td>H_2</td>
<td>NO_3^-</td>
<td>CO_2</td>
<td>Methanogenesis</td>
</tr>
<tr>
<td></td>
<td>H_2</td>
<td>SO_4^{2-}</td>
<td>CO_2</td>
<td>S & sulfate reduction</td>
</tr>
<tr>
<td></td>
<td>H_2</td>
<td>CO_2</td>
<td>CO_2</td>
<td>H_2 oxidation</td>
</tr>
<tr>
<td></td>
<td>CH_4</td>
<td>SO_4^{2-}</td>
<td>CO_2</td>
<td>H_2 oxidation</td>
</tr>
<tr>
<td></td>
<td>Organics</td>
<td>Organics</td>
<td>Organics</td>
<td>Heterotrophic metabolism</td>
</tr>
<tr>
<td></td>
<td>NO_3^-</td>
<td>Organics</td>
<td>Organics</td>
<td>Denitrification</td>
</tr>
<tr>
<td></td>
<td>Organics</td>
<td>Organics</td>
<td>Organics</td>
<td>S & sulfate reduction</td>
</tr>
<tr>
<td></td>
<td>Organics</td>
<td>Organics</td>
<td>Organics</td>
<td>Fermentation</td>
</tr>
</tbody>
</table>

Thermodynamics – Energy limitations

- **Amount of Energy available in chemical reactions**
 - Depends on temperature and pressure
 - How this changes with T and P is different for every compound
 - A negative value of Gibbs energy indicates there is a thermodynamic drive for the reaction to proceed (useful for the organism to get energy)

Microbial life exploits energy gradients with redox transitions

- From Yellowstone Hot springs
 - Each line is a possible catabolic reaction
 - Each depends on T and composition of hot spring
- Example Redox reactions
 - Methanogenesis
 $$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$
 - $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
- Sulfur oxidation or reduction
 $$S + 1.5O_2 + H_2O \rightarrow SO_4^{2-} + 2H^+$$
 $$S + H_2 \rightarrow H_2S$$

Energetics Examples

- From Yellowstone Hot springs
 - Each line is a possible catabolic reaction
 - Each depends on T and composition of hot spring

Microbial life exploits energy gradients with redox transitions

- From Yellowstone Hot springs
 - Each line is a possible catabolic reaction
 - Each depends on T and composition of hot spring

Extremophiles & Limits

- What do we mean by limit?
 - Does it move or grow or do anything?
 - Maintains a constant population?
 - Dying slowly enough to be observed?
 - Boundaries between these states are not well known

How much E is needed?

- **Energetics of Growth**
 - E to capture biomolecules (depends on environ)
 - Polymerization into bigger molecules
 - Aerobic conditions: 18.4 kJ (g cells)$^{-1}$
 - Anaerobic conditions: 1.4 kJ (g cells)$^{-1}$
- **Energetics of Steady State**
 - Defense against chemical stress
 - Maintaining cell
 - In some environments, this is a very small number! (1.6 J/yr/cm2)
- **Energetics of Persistence**
 - Not well understood – but very low

Power supply (energy per unit time) > demand

- Power supply < demand
- Power supply = demand
- Power supply (energy per unit time) > demand

Energetics of Growth

- E to capture biomolecules (depends on environ)
- Polymerization into bigger molecules
- Aerobic conditions: 18.4 kJ (g cells)$^{-1}$
- Anaerobic conditions: 1.4 kJ (g cells)$^{-1}$

Energetics of Steady State

- Defense against chemical stress
- Maintaining cell
- In some environments, this is a very small number! (1.6 J/yr/cm2)

Energetics of Persistence

- Not well understood – but very low
Summary of Important Points

- **Classification of Microorganisms related to habitats**
 - Temperature: psychrophiles, mesophiles, thermophiles, hyperthermophiles
 - Environment: barophiles, xerophiles, halophiles, acidophiles, alkaliphiles
- **The Energy of life – Redox**
 - Chemical energy is stored in high-energy electrons that are transferred from one atom to another
 - Organisms get energy from light or chemicals and the carbon from inorganic (CO2) or organic
 - How much energy is “real” (Gibbs energy) depends on environment (T, P, chemistry)
 - Classification of organisms by whether it makes food or eats food produced
- **Extreme Environments and their residents on Earth**
 - Examples: hydrothermal vents, deep earth, polluted areas, deserts, antarctic...
- **Where might we look for life on other planets?**
 - Habitability markers: water and redox potential

Parting Thoughts

- **The mantra for searching for life**
 - Follow the water has been NASA’s goal – is the the right mantra?
 - Follow the energy (redox)?
- **What does it mean to be a mesophile?**
 - Are we the extreme organisms?

A Preview of Future Lectures

- **Ancient Crater lakes on Mars**
 - There was clearly a period in Mars history where substantial water was present on surface
 - How long? How much?
 - How long is needed for life development?
 - Where to look for fossils of that early life?
- **Many icy satellites have oceans**
 - Europa, Callisto, Enceladus

Psychrophiles

- **Cold lovers**
 - Temps 0-20°C
 - Survive freeze/thaw
 - Reproduce 2°C
 - Often tolerant of salty conditions
- **Habitats**
 - Soils
 - Deep ocean water
 - Sea ice
- **Least studied of - extremophiles**

Mesophiles

- **Moderate temperatures – most common**
 - Soil bacteria
 - Pathogens
- **Most pathogens grow best at 37°C**
 - Most food spoilage due to mesophiles

Eukaryotic Thermophiles

- **Habitats**
 - Moderate Temperatures
 - 30-60°C
 - Acidic environments
 - pH 1-4
- **All are anaerobes**
 - Solubility of O2 in water above 85°C is very low

Psychrobacter, Antarctic

CH4 worms, Sea of Cortez, Ice

Thermus aquaticus

Pyrodictium occultum – grows 105-115°C at hydrothermal vents. Most primitive

Sofolbus acidocaudarius (Italy)
Hyperthermophiles

- **Prokaryotes**
 - Temperatures
 - Low: 45-90°C
 - Optimal: 45-80°C
 - High extreme: 125°C
 - pH: 7-5
 - Can survive high pressure
- **Discovered within last 30 yr**
- **Location (submarine/terrestrial)**
 - Geothermal areas
 - Oil fields, 3 km deep
- **Energy**
 - Chemolithoautotrophic
 - Inorganic redox for E
 - CO₂ is only carbon source
 - e donors: H₂, Fe, reduced S

Barophiles – Deep Dwellers

- **The Geothermal gradient**
 - T increases with depth (~10°C per km below 100 km)
- **Deep, dark dwelling bacteria**
 - Tolerate high T, P (>100 atm)
 - Are usually thermophilic
 - Grow best at P = 500-600 atm
 - Tolerate periods up to 2.5 yr in vacuum
- **Habitats**
 - Up to 4 km depth
 - Barophilic mass > all surface life

Acidophiles / Alkaliphiles

- **Acidophiles**
 - Tolerate acidic habitats (pH 1-4)
 - Produce special enzymes to prevent cell destruction
 - (commercial application) – survive by keeping acid out
 - Environments: Volcanic regions, Coal mines
- **Alkalophiles**
 - Grow at pH > 10
 - Environments: Mud volcanos (subduction zones)
- **Acids & Bases**
 - Acid – substance that gives H⁺ into water
 - Base – decrease the concentration of H⁺ ions in H₂O
 - **pH Scale**
 - In 1 liter H₂O there are 1.0x10⁻⁷ mole of H⁺ and OH⁻
 - pH = -log[H⁺]
 - Pure water has pH=7

Deinococcus Radiodurans

“Conan, the Bacterium”

- **Characteristics**
 - Radiation resistant
 - Loss of viability 300x that which would kill most complex organisms
 - Genetic code repeats lots → identify & repair
 - Cold resistant
 - Vacuum resistant
 - Long dormancy
 - Oxidation resistant
- **History – around at life beginnings?**

Halophiles – Hypersaline Environments

- **Habitats**
 - Dry lake beds
 - Salt flats
 - Often very alkaline
 - Often very hot (thermophiles)
- **Adaptation**
 - Avoid dehydration – balance solution outside/inside
 - Require extreme NaCl for growth (saturated brines)

Xerophiles

- **Characteristics**
 - Surviving very dry conditions
 - Spores dormant in amber for > 130 Myr
- **Desert varnish**
 - Mineral precipitation on rocks (arid)
 - Magnetite producing bacteria

Dead Sea
Endoliths – Rock dwellers

- **Survival strategy for arid environments**
 - Bacteria / algae near surface of rock
 - Need access to sunlight
- **Characteristics**
 - Psychrophilic
 - Xerophilic
 - Phototrophs

Why show all these organisms?

- To show the possible environments in which life can exist
- To show how organisms have adapted
- To show that life fills every niche where T permits it and there is water

Chemoautotrophy on the Seafloor

- **Interaction of seawater & ocean floor**
 - Earth’s heat removal
 - Crust evolution: Changes in mineralogy, chemistry
- **Biological community support**
 - Concentration of trace chemical species
 - Potential for extensive biomass
 - Potential for exotic metabolisms
- **Analog for extraterrestrial fluid covered rocky bodies**

Geologic Settings – Water Rock Interactions

- **Mid ocean ridge axis**
 - Hot springs and hydrothermal plumes (80% of magma activity)
 - Mid ocean ridge flanks – warm springs
- **Subduction zones**
 - Forearc – mud volcanoes, gas hydrates
 - Arc volcanoes – hot springs
 - Hot spot volcanoes (50% e.g. Hawaii, Iceland)
- **Ocean basement** – solid rock portion under sediments
- **Making a Living**
 - Low cell abundance
 - Slow growing
 - Diverse metabolisms
 - Uneven distribution

Chemical transformations in Hydrothermal Systems

- Biogenic oxid-reduction reactions during fluid-SW mixing
- Abiogenic (degassing/ fluid-rock rxns)
Energetics at Hydrothermal Vents

- Amundsen et al., 2011

Chimney Life

- Conditions
 - Steep T gradients
 - Narrow living zone
- Macroscopic
 - Tubeworms
 - Blind shrimp – but with organs sensing 300k radiation

Serpentinization

- Chemical hydration of olivine
 \[(\text{Mg}_2\text{Fe}_3\text{Si}_2\text{O}_5)+\text{H}_2\text{O}+\text{C} = \text{Mg}_3\text{Si}_2\text{O}_5(O\text{H})_2 + \text{Mg(OH)}_2 + \text{Fe}_2\text{O}_3 + \text{H}_2 + \text{CH}_4 + \text{C}_2\text{QC}_5\]
 - Potential for supporting high-pH chemical ecosystems?
 - Can occur on continents too
- A process on Mars?
 - Evidence of the right chemistry on mars (olivine rich basalts) + water

Life in frigid places - Antarctica

- Physical characteristics
 - 5.4 x 10^6 sq mi
 - 7000 ft elevation
 - 75% all fresh water
 - \(T_\text{avg} = -70^\circ F\) (low \(-128.6^\circ F\) – \(-89^\circ C\))
 - Winds up to 300 km/hr
- Historical
 - Coal beds \(\rightarrow\) once clement
 - Pangea \(\rightarrow\) Myr
- Dry Valley Lakes
 - 1991 Expedition
 - Penetration 1978
 - H_2O just above freezing \(\rightarrow\) greenhouse effect
 - Enriched from spring runoff

Antarctic Dry Valleys – Hyper-Arid Cold Polar Desert

- Characteristics
 - 4000 km^2 mountainous
 - Coldest, driest deserts on Earth
 - Mean annual T \(-20^\circ C\)
 - Mean annual snow 0.6-10 cm – snow sublimates
 - Strong katabatic winds
 - Biology very sparse
- Excellent analog for Mars climate change studies
 - Lifetime & location of subsurface ice

Courtesy J. Head, NAI WS 2005 presentation
Mullins – debris covered glacier
Lake Vostok

- Largest of 70 sub-glacial lakes
- Discovered by radar imaging in 1996
- 1,500 km from coast, 3,500 m elevation
- 250km x 50km, max depth 800m, avg depth 340m
- The lake has 2 separate basins separated by a ridge → two different ecosystems?

Most isolated aquatic environment on Earth

- Cut off from outside environment 35-40 Myr ago
- \[T_{air} = -89^\circ F, T_{lake} = -3^\circ C \]
- Oligotrophic environment – super saturated in oxygen (50x most lakes), likely due to pressure of ice sheet

1998 Russian Core \(\rightarrow \) 3.623 km

- Living organisms from 500-2,750 m (2.5 x 10^19 yr old)
- Low population diversity
- Utilized dissolved organic C and O migrating through ice
- 4 climate changes 20,000 to 100,000 yr periods ([CO₂])

Current Drilling Status

- Russians approved in 2011 for penetration
 - Bio protection: pressure will cause lake water to enter borehole and freeze
 - They will return and sample the frozen ice
 - Feb. 2011 – had to stop for winter, 30 m above lake
 - Concern over kerosene poured into drill hole to keep it open?
 - Work now on accretion ice reported that 3700 species have been identified
 - eukarytes (6%), bacteria (94%), multicelled organisms – anerobic, aerobic, psychrophilic, halophilic

Lake Whillans - Antarctica

- US team drilled through 800 m of ice 2/2013
- Cell count 1000 bacteria per milliliter (1/10 ocean abundance)
- Lifestyle unknown – but must be chemoautotrophs

Life in Antarctic sea ice

- Salts concentrate in veins in ice
 - Cold temperatures < -30°C
 - This suppresses the freezing point → brines
 - Bacteria found in liquid H₂O veins
 - May sustain bacterial metabolism

Deming, JW et al. 2002 Curr Opin in Microbiol

Lake Hoare – Taylor Valley

- Environment much like Mars
 - Permanent ice cover
- Microbial mats
 - Increased oxygen levels
 - 1% sunlight
 - Algae draw Fe, S and calcite from water

10\% 80\%
Life under ice (Glaciers)

- **Source of energy**
 - Pyrite oxidation leads to dissolution of bedrock carbonate
 - This drives autotrophy – generates CO₂ for methanogens
 - Grinding up of bedrock by glacier makes H₂ – food for the methanogens

Atacama Desert

- **Conditions**
 - Driest place on Earth
 - Thin atmosphere
 - High radiation (UV) exposure
- **Sparsest life on Earth**
- **Terrain to test space bio detection instruments**

Life on the Socompa Volcano rim– Atacama desert, Chile

- **Microbial Environments**
 - Small vents producing CO₂, CH₄
 - Life surviving on small oases
 - Rain < 200 mm / yr
 - T averages -2°C
 - Altitude ~ 20,000 ft

The atmosphere

- **Microbes in the Atmosphere**
 - Serve as cloud condensation nuclei
 - Believed to be airborne spores
- **Could life live only in the clouds?**
 - Ideas on how to make membranes

Rio Tinto

- **Mined since 3000 BC**
 - Acidic (pH = 2)
 - Red = dissolved iron
 - Rocks → sulfides
 - Fe-oxidizing bacteria thrive here
- **Possibly similar to Mars wet environments?**
 - Opportunity / Spirit
 - S & Fe, Jarosite mineral

“Recent” Microbial Developments

- 1977 – Woese discovers 3rd domain: Archaea
- 1977 – Hydrothermal vents discovered
- 1986 – K. Mullis uses heat stable enzyme from *T. aquaticus* to amplify DNA
- 1995 – First microbial genome sequenced *H. influenzae*
- 2010 – 1st chemically synthesized bacterial genome, *Mycoplasma mycoides*
- Above – grand prismatic spring, Yellowstone
- Right – changing conditions drastically change microbial community