Comets are important for Astrobiology because they can tell us about the early solar system. Why might they preserve a record of the early solar system?

A – Most are stored cold at large distances from the sun
B – They are too small to have endogenic processes
C – They are unaffected by the heat of the sun
D – All of the above
E – A & B
Which does not represent an exogenic processes that could be important for Astrobiology?

A – Exogenic processes affect the heat budget of the planet
B – They are important for delivery of materials
C – They are potentially related to mass extinctions
D – They can help us remotely date and explore other surfaces for resources
E – They are all important for astrobiology

Exogenic Processes

Processes arising from space
• Interaction with meteoroids
 – Meteorite impacts
 – Regolith formation
• Interaction with plasmas
 – Radiation Damage
 – Volatile implantation
• Everything in SS is affected
 – It happens now
 – It happened more in the past

• Interaction with meteoroids
 – Relative Surface ages
 – Excavation of materials
 – Resources
Lecture Overview

- **Impact Formation Processes**
 - Kinetic energy
 - Typical velocities in the SS
 - Goal of understanding how to recognize craters
 - Understand what we can learn about a planet from craters

- **Impacts and Mass Extinction**
 - The K-T Impact

- **Examples of Craters in SS**
 - Affect of atmospheres
 - The Deep Impact mission

- Craters on Jupiter’s Moon, Ganymede
- Tycho crater, The Moon

Craters that are familiar
Zooming in on very small craters
Scale of laboratory experiments

Barringer Crater, AZ
50,000 years ago
Evidence of Earth Impacts

- Tectonics, aeolian, life processes erase
 - Old structures hard to see

Vredefort, S. Africa
300 km diam, 2.0 Gy
Magnetic anomaly
Traces impact

- Recent Peruvian impact
 - Only casualty was a cow
 - 9/15/2008
 - 4.5 m deep, 13 m wide
 - Entry velocity 12.8 km/s
Lunar Impacts

• Recent lunar impacts
 – 2005-2010
 – 200 impacts of 1 lb or greater
 – Only on dark side

• Meteorite impact flash
 – 25 cm diameter rock
 – Velocity 38 km/s
 – Flash 0.4 sec long

Not Quite as Portrayed in the Movies
Impact Energies

- **Kinetic Energy**
 \[KE = 0.5 \, m \, v^2 \]

- **Momentum**
 \[P = m \, v \]

- **Velocities**
 - Orbital velocity (any orbit)
 \[v^2 = GM \left(\frac{1}{r} - \frac{1}{a}\right) \]
 - Circular velocity
 \[v^2 = \frac{GM}{r} \]
 - Escape velocity
 \[v^2 = GM \left(\frac{1}{2r}\right) \]

- **Example**
 - Take a Ni-Fe meteoroid
 - 30 m diameter, \(v = 15 \) km/s
 - KE \approx \text{few} \times 10^6 \text{ tons TNT}

Cratering Mechanics

- **Characterized by high velocities**
 - Hypersonic – faster than the speed of sound
 - 0.33 km/s in air
 - 1-4 km/s in rock

- **Orbital velocities**
 - Earth orbital velocity \(30 \) km/s
 - Parabolic velocity \(42 \) km/s
 - Earth impactors can have
 - \(v = 30 + 42 = 72 \) km/s
 - \(v = 42 - 30 = 12 \) km/s
Average Impact Velocities in SS

<table>
<thead>
<tr>
<th>Body</th>
<th>Local Bolides</th>
<th>Asteroids, Short Period Comets</th>
<th>Long Period Comets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>4.7</td>
<td>20</td>
<td>62</td>
</tr>
<tr>
<td>Venus</td>
<td>11.5</td>
<td>18</td>
<td>47</td>
</tr>
<tr>
<td>Earth</td>
<td>12.5</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>Moon</td>
<td>6.1</td>
<td>14</td>
<td>38</td>
</tr>
<tr>
<td>Mars</td>
<td>5.6</td>
<td>10</td>
<td>31</td>
</tr>
</tbody>
</table>

Mike Carr, Surface of Mars

Experiments – Crater formation

- **NASA Ames Vertical Gun Range**
 - Used to simulate cratering
 - Typical velocities 17,895 mph (~8 km/s)

Schulz et al (2007) Icarus 190
Ejecta Blankets – A look at Sub-surface

- **Inverted stratigraphy**
 - Brings material from deeper layers to surface
 - Sometimes this is different composition
- **Secondary craters**
 - Large blocks ejected from primary impact → field of nearby small craters
- **Firdousi Crater (Mercury)**
 - 96 km in diameter
 - 3 color image – note “fresher” exposed material
Crater Formation

- **Contact & Compression**
 - Contact – shock wave
 - Compression in front
 - Strength of shock wave >> strength of rock
- **Excavation**
 - Projectile and target melting
 - Material behaves like a fluid
- **Modification**
 - Target material sent into motion
 - Formation of ejecta blanket
 - Secondary craters form
- **Final Structure**
 - Mass ~ 100 x projectile is ejected
 - Duration 10’s of seconds
 - Final structure: inverted stratigraphy

From French, 1998
Impact Features

- **Ejecta blankets**
 - Deposition of fine debris
- **Secondary craters**
 - Impacts from ejected clumps of material
 - Comet break up → crater chains

Depth Diameter Relations

- **Crater Diameter scales with**
 - Projectile size
 - Projectile velocity
- **Crater morphology depends on**
 - Planet gravity $F = GM/r^2$
 - Structure, density, composition of target
 - Presence of atmosphere
- **Complex crater formation**
 - Gravity sufficient for rebound
- **Craters are a function of**
 - Original shape (set by impactor)
 - Later modification
<table>
<thead>
<tr>
<th>Simple (bowl)</th>
<th>Complex (central peak, slumping walls)</th>
<th>More Complex (Multiple rings, etc.)</th>
<th>Basin (Enormous!)</th>
</tr>
</thead>
</table>

- Few km
- Tens of km
- Hundreds of km
- > Hundreds

Depth Diameter Relations

- Ilmenite (FeTiO_3) abundant on moon (source of O)
- How to use craters to find minerals?
 - Multi-color imaging \rightarrow Ti-rich areas
 - Some minerals are only visible in certain craters
 - Use depth / Diameter relations to get depth

Lunar mare Tranquilitatis as seen from the Clementine mission. Red indicates low titanium abundance
Caloris Basin – Mercury

- **Basins – largest impact structures**
 - Caloris 1300 km diameter
 - Seismic waves pass through planet
 - Formation of “weird terrain” at antipode
 - Hills 2 km high – vertical ground movement
- **Crater types / sizes for the Moon**
 - Simple bowl < 10 km
 - Central peak 10-150 km
 - Peak clusters/rings 100-220 km
 - Multi-ring basins > 220 km

Using Impacts for Dating

- **Saturation Cratering – Crater counting**
 - When adding more craters covers old ones
 - Calibrated by Lunar rocks, this occurs only for the oldest surfaces
 - Crater counts can give relative ages
- **The Late Heavy Bombardment**
 - Possible spike in impacts 3.8 Gy
Given the ubiquitous nature of impacts in the Solar System, why does the Earth have so few craters?

A – There is not much old crust available because of plate tectonics
B – Aeolian processes
C – Life processes
D – A and B
E – A, B, C
Lunar Craters

- **Orientale multi-ring basin**
 - Age > 3 Gy
 - Lava flowed into maria from fractured crust
 - Inner ring 320 km diameter
 - Outer Cordillera 930 km diameter

Craters on Mercury

- Similar to Lunar craters
A long lobate scarp on Mercury formed when it shrank as the core cooled. Did this form before or after the marked crater?

A – Before B – After

Craters on Venus

- Thick Atmosphere
 - Ejecta – cloud of debris
 - Wind streaks
- Higher gravity than Moon, Mercury
 - Smaller complex craters
 - Simple bowl: 2-4 km
 - Central Peak: 8-30 km
 - Peak clusters: 20-80 km
 - Peaks/rings: 40-90 km
 - Multi-ring basins: 60-300 km
Mars Craters

- **Different morphology**
 - Effect of sub-surface volatiles
 - Effect of atmosphere

Victoria Crater 0.73 km

Gale Crater – 154 km, MSL landing site

Craters on Ice

- **Ganymede & Callisto (top), Europa (bottom)**
 - Change in morphology with size
 - Top scale bar = 30 km
 - Bottom scale bar = 10 km
- **Crater heights subdued**
 - Ice relaxation
The K-T Impact

- **65 Myr Cretaceous-Tertiary**
 - Marked by a thin layer of sediment
 - 75% of all species died globally
 - Rapid < 1000 yrs
- **Causes**
 - Massive volcanic eruption?
 - Asteroid impact?

The K-T Layer

- **Cm-thick layer rich in Iridium**
 - Found globally
 - Common in asteroids
 - Rare on Earth surface (atomic weight = 192) – why?
 - When Earth differentiated – sank to core
- **Suggested extra-terrestrial source**
 - But where was the crater?
 - Were there alternate explanations?
Volcanos – Deccan Traps

- **Flood basalt eruption**
 - Source deep in mantle
 - Duration can be very long

- **Massive Eruptions**
 - Dust, ash and aerosols into atmosphere
 - Long term climate change
 - KT extinction was too brief

<table>
<thead>
<tr>
<th>Where</th>
<th>Myr Ago</th>
<th>Last Myr</th>
<th>How Big Mkm³</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siberia</td>
<td>250</td>
<td>1</td>
<td>1-4</td>
<td>90-95% extinction of life (PT extinction)</td>
</tr>
<tr>
<td>Ontong Java, Indonesia</td>
<td>122</td>
<td>3</td>
<td>36</td>
<td>Largest event in last 300 Myr</td>
</tr>
<tr>
<td>Kerguelen, Antarctica</td>
<td>118</td>
<td>4.5</td>
<td>4-5</td>
<td>Global environmental crisis</td>
</tr>
<tr>
<td>Deccan Traps, India</td>
<td>60-68</td>
<td>30 kyr</td>
<td>0.5</td>
<td>Global 2 deg temperature drop</td>
</tr>
<tr>
<td>Columbia River, US</td>
<td>17-14</td>
<td>3</td>
<td>0.2</td>
<td>Later flooded by Yellowstone flows</td>
</tr>
</tbody>
</table>

The K-T Impact Crater

- **Crater found in Yucatan Peninsula**
 - 180 km in diameter (10 km diam impactor)
 - Found during a petroleum survey

- **Impact evidence**
 - Gravity anomaly → anomalous density distn.
 - Shatter cones (2-30 GPa pressure wave through rocks)
 - Shocked quartz (high pressure)
 - Ring of cenotes (sinkholes)
Chixulub Impact Animation

Chixulub Impact Effects

- **Mega-tsunami**
 - Yucatan would have been covered by a shallow sesa
 - Tsunamis could have had wave heights of 100 m
- **Shock waves → global earthquakes**
- **Excavated material**
 - Re-Entry into atmosphere – widespread fires
For the same size impactor and the same speed, which planet would have the largest crater?

A – Mercury
B – Mars
C – Earth
D – Moon
E – They will all be the same

Cooling and Warming

- Dust and particulates in atmosphere – block sunlight
 - Global cooling for as much as a decade
- CO₂ liberated during impact
 - Global warming
 - Ocean acidification
- Alternate ideas
Small Scale Interactions

- **Micrometeorites**
 - Regolith formation ~ 1 mm/10^6 yr
 - Pitting of surfaces
 - Gardening (surface turn over)
- **Sputtering**
 - Erosion ~ 1 Angstrom / yr
- **Plasma / Cosmic rays**
 - Interaction with charged particles
 - Radiation damage
 - Volatile implantation

Summary of Small Impacts

<table>
<thead>
<tr>
<th>Source</th>
<th>Flux</th>
<th>Energy</th>
<th>Velocity</th>
<th>Depth</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Wind</td>
<td>3 x 10^6</td>
<td>1 keV</td>
<td>400 km/s</td>
<td>300 A</td>
<td>Implant volatiles Radiation damage</td>
</tr>
<tr>
<td>Solar Flares</td>
<td>1 x 10^2</td>
<td>10 keV - 100 MeV</td>
<td>mm → cm</td>
<td></td>
<td>Radionucleide production Nuclear tracks</td>
</tr>
<tr>
<td>Galactic CR</td>
<td>1</td>
<td>100 MeV - Few GeV</td>
<td>cm → m</td>
<td></td>
<td>Tracks Radionucleides New isotopes</td>
</tr>
</tbody>
</table>

- **Sources**
 - Solar Wind – flow of particles from the sun, CR – cosmic rays (high energy particles from deep space)
- **Fluxes**
 - Number of particles per second
- **Energies**
 - Expressed in electron volts – k = 1000, M = 1 million, G = 1 billion
The Shoemaker Levy 9 Impact

- **Comet SL9**
 - Discovered in 1993 – 21 fragments
 - Broke with close Jupiter approach in 1992
- **Impact science**
 - Molecules dredged up from lower atmosphere
 - Waves traveled through atmosphere
 - NH₃ and CS₂ persisted in atm for 14 mo

- 1st impact, 24,000K fireball

- HST UV image
- Collision of fragment W seen by Galileo spacecraft 7/22/1994
Re-Useable Missions

- **DI → EPOXI**
 - Explore comet Hartley 2
 - Stardust → Stardust-NExT
 - Return to 9P/Tempel 1
The DI Crater Challenge – Arrival Time

- > 500 whole/partial nights worldwide
- 25 telescopes, 11 countries

- Last chance to affect arrival time was ~1 yr pre-encounter
- The Rotation period was changing
- We had very little fuel left
- We used it all So did we see the crater?

Target effects

Schultz, et al 2009
Crater rays emerging from DI site superimposed on Stardust-NExT

Deep Impact

Stardust-NExT

(from Schultz et al., 2007)
Impact Physics – Surface Material Strength

- Crater imaged ~ 50m across
- Consistent with impact into surface with texture/strength of “lightly packed snow”
- Open Questions
 - Modification by ejecta fallback
 - Change in 5.5 years?

From P. Schulz

Richardson & Melosh (2012); Wellnitz et al. (2012)
LCROSS Experiment

- **Lunar Crater Observation and Sensing Satellite Goals**
 - Confirm presence of water in permanently shadowed areas
 - ID the cause of H signatures seen at lunar poles
 - Determine amount of H₂O in regolith
 - Determine regolith composition

Launch on June 18, 2009 at 5:32 p.m. ET
Summary

- **Impact Energy**
 - Comes from orbital velocity, impactor mass
- **Occur all over solar system – morphology depends on**
 - Impactor composition
 - Target composition, gravity
 - Presence of an atmosphere
- **Impact Effects**
 - Deliver and remove materials
 - Mass extinctions / climate change
Impact Melt

- Impact Melt
 - Xx
- Tektites
 - Xx

Vredefort Impact melt deposit – S. Africa