Meteorites and the Story of Mars Meteorite ALH84001

Karen J. Meech, Astronomer
Trish Doyle, Geo- / Cosmochemist
Institute for Astronomy

Searching for Life on Mars: Overview

Criteria for life & What tools are needed

Searching for Mars Life
 - The Mars Viking Experiment
 - History
 - Findings

Meteorites
 - History & formation
 - Falls of note
 - The US Meteorite program
 - Meteorite classification

ALH84001
 - Description
 - Pieces of evidence

Summarize Findings

What would you consider as convincing evidence for life on a planet?

What Tools Would you Need?
Scanning Electron Microscope

- Accessible technology
 - Focused e- interact with sample surface
 - Magnetic fields move the beam over sample
- So good: see new features!
- Works best if sample is coated
 - Vapor coating of carbon, gold, palladium 2-20 nm

What May Cause Concern?

In situ / Physical specimen
- Sample Storage & preparation
- Realistic setting – time / space
- Biological indicators e.g. isotopes
 - Not derived from a habitable zone
 - Funding for Good background research

Accessible technology

Focused e- interact with sample surface
Magnetic fields move the beam over sample
So good: see new features!
Works best if sample is coated
Vapor coating of carbon, gold, palladium 2-20 nm

Searching for Life on Mars: Viking experiments

James Lovelock & Mars NASA
Viking (1961)
- Asked to provide advice on life detection – how to recognize it
 - A planet will exhibit an atmosphere which is far from chemical equilibrium if there is life
 - If there is life, it must be pervasive (i.e. there can’t be a little bit of life)
 - Life uses liquids and atmosphere to "communicate" or interact by sharing nutrients, wastes & evolution,
 - Thus the chemistry of the environment should be constantly changing in the presence of life
- Prediction:
 - Life will not be found on Mars – because it exhibits Atmospheric equilibrium chemistry

Viking Mars Mission
- 1968 James Martin asked to lead mission science
- Launch Viking 1 8/20/75; Viking 2 2 mo later
- Viking 1 lands - 20 July 1976
- Viking 2 lands - 3 September 1976
- 2 year program – search for life

Viking Orbiter Images

Viking 1 orbiter image
Candor Chasma (Valles Marineris) 1978
Mars Environment

- Viking temperatures – similar at both landing sites
- Effect of large dust storm is seen in the Temperature profile

Sunset 20 Aug 1976

Mars Viking Life Experiments

- **Gas Exchange Experiment (GEX)**
 - Changes in the makeup of gases (related to biological activity) in a test chamber

- **Labeled Release Experiment (LR)**
 - Detect the uptake of a radioactively-tagged liquid nutrient by microbes
 - Gases emitted by microbes would show tagging.

- **Pyrolytic Release Experiment (PR)**
 - "Cooking" regolith samples exposed to radioactively-tagged CO₂ to see if the chemical had been used by organisms to make organic compounds.

- **Gas Chromatograph – Mass Spectrometer Experiment (GCMS)**
 - Heated a regolith sample
 - Revealed an unexpected amount of water
 - Failed to detect organic compounds. This absence was so absolute that it seemed there must be some mechanism actually destroying carbon compounds on the surface.

Viking Life Experiments Press Conference

"Viking not only found no life on Mars, it showed why there is no life there…. the extreme dryness, the pervasive short-wavelength UV radiation…

Viking found that Mars is even dryer than had previously been thought…

The dryness alone would suffice to guarantee a lifeless Mars; combined with the planet’s radiation flux, Mars becomes almost moon-like in its hostility to life."

Searching for Life on Mars:

Meteorite background

- Lead scientist, H. P. Klein said the experiments didn’t rule out life, either
- Gilbert Levin (Mars team) said LR experiment showed life
- Most scientists believe chemicals created a false positive
- Data is available to the public
- The debate continues
- NAI – important to understand the biomarkers – what would be the sign of life.
Meteorite History

- Most famous European fall – 17 Nov 1492
- Witnessed (boy) – m-deep hole
- Attracts attention of Emperor Maximilian
- Considered good omen – preserved

Origin of Meteors / Meteorites

- Earth passes through dust in comet orbit
 - Burns in Earth atmosphere
 - Larger chunks resulting in meteorite finds come from
 - Moon
 - Mars
 - Asteroid collisions

Fireballs / Debris

The 15 Feb 2013 Fireball

- Chelyabinsk Russia
 - Largest since 1908
 - Size ~ 17 m (larger than early est)
 - ~ 10^4 tons, v = 18 km/s
 - Energy ~ 500 kilotons TNT
 - Fall found – ordinary chondrite
 - < 10% metallic iron
 - Largest piece likely in lake

Tagish Lake Meteorite

- Canadian fall 18 Jan 2000
 - 56 ton meteoroid
 - 4 m diam (500 fragments found)
- Primitive CC (carbonaceous chondrite)
 - 2 diff types mixed (CI, CM)
 - some with carbonates
 - Full of nanodiamonds
 - Low density
 - Form farther out in SS
 - D-type parent: 773 Irmintraud

US Antarctic Meteorite Program

- NSF – Funds collection near transantarctic mountains
 - Desert-like conditions
 - Contrast between low albedo meteorites & snow
- NASA – Examines at JSC in Houston
- Smithsonian – Curates
 - 15,000 specimens, 13,000 from Antarctica
 - Oldest – Earth residence 10^6 yrs
 - 1981 – first recognized from Moon
- 2006 Mt. Erebus expedition (UHNAI postdoc)
Meteorites

Undifferentiated

- Chondritic Meteorites
 - 3 main types
 - Ordinary
 - Carbonaceous
 - Enstatite
 - 5 main components
 - including the oldest dated material in the Solar System

- Allende (CC)

Differentiated (Non-chondritic meteorites)

- ALH 77005 (Mars)

Stony (including Chondrites)
- 95% of all meteorites

Stony-Iron
- 1% of total finds

Iron
- 4% (most often found)
- Pure metal – Ni/Fe alloy
- Form by differentiation then breakup of parent

Ni-Fe meteorites
- Widmanstatten pattern
- Crystal size is related to cooling times for magma
 - From differentiation
 - Melt near surface

Achondrites
- Angrites
- Aubrites
- Brachinites
- ureilites
- HED (3 types)
- Lunar
- Martian (4 types, SNC)
 - Shergottites
 - Typical of terrestrial basalts
 - Nakhlites
 - Larger Fe-rich olivine/pyroxene
 - Form with aqueous alteration
 - Chassigny
 - 90% olivine, 10% pyroxene
 - Orthopyroxenite (ALH84001)

Mars Meteorites
- Mars Origins
 - Large volatile composition
 - parent body has atm
 - Isotopic Fractionation pattern unique: Mars
- Find Locations
 - 50% in Antarctica
 - 1 from Nigeria

Adapted from http://www.mnh.si.edu/earth/text/5_1_4_0.html
Which of the following meteorites is least likely to be a Martian meteorite?

A: Peekskill stony
B: Lunar meteorite
C: Allende (CC)
D: Stony-Iron

Searching for Life on Mars
Case Study: ALH 84001

Physical specimen
- Human history
- Description

Physical evidence e.g. Fossils
- Fossils?
- Remnants of Fe$_3$O$_4$ from bacteria

Realistic setting – time / space
- Meteorite history

Biological indicators e.g. isotopes
- Carbonates
- Presence of organics & Fe$_3$S$_4$

Biological indicators
- e.g. isotopes

Description of the Meteorite

- 95% orthopyroxene
- Crystal structure has many cracks
 - Cracks have glasses (melted rock) from 30 GPa shock pressure (3×10^{10} atm)
 - Cracks have 0.1mm carbonate (CO$_3$) globules flattened (grow in cracks)
- Polycyclic Aromatic Hydrocarbons (PAHs) near carbonates
- Dissolved carbonates → magnetite and iron sulfide (Fe$_3$S$_4$

History – ALH 84001

- Discovered in Antarctica (’84)
- Known from Mars because of atm gases
- Notable
 - Oldest rock from any planet
 - Orthopyroxenite (not SNC)
- Notoriety (’96)
 - NASA: evidence for life on Mars

Life Story of ALH84001

- Impact
 - Brings ALH84001 to the surface
 - Shock deformed impact glasses
 - Pressures exceed 30 GPa

- Mars Ejection
 - Or ejection from parent
 - Cosmic ray exposure age
 - 16-17 x 106 yrs ago

- Fall to Earth
 - 13,000 years ago
 - 14C dating
Life Story of ALH84001

- Crystalization
- Impact
- Possible wet era
- Possible formation of carbonates
- Mars Ejection
- Fall to Earth

The Fossils

- Tube-shaped → similar to filamentous cyanobacteria
- 20 nm in size
- Apex Chert 3.5 Gy

The Fossils

- Tube-shaped → similar to filamentous cyanobacteria
- 20 nm in size
- Apex Chert 3.5 Gy

Magnetite & Fe₃S₄

- Compelling evidence for life
 - Bacteria use magnetite as a compass to aid in navigation

ALH84001 – Mars Life
Essential Findings

- 6 Aug 1996 Press Conference
 - NASA Administrator W. Huntress & David McKay

 "...in examining the Martian meteorite ALH84001 we have found that the following evidence is compatible with the existence of life on Mars..."

 - Igneous rock penetrated with fluid → mineral formation & biogenic activity
 - SEM images of carbonates → structures similar to microfossils
 - Fe sulfide & magnetite → life process signature
 - Concentrated PAHs

Extraordinary claims require extraordinary evidence – C. Sagan
The Fossils

Very controversial
- Too small for life → 100x smaller than terrestrial
- Life requires cellular structure
- Too small to test composition
- Ruled out contamination

Sample Preparation?

- Thick coatings can "crack" → “segmented” features
- Coatings can smooth out features
- Surfaces can be examined w/o coating → lower resolution

Carbonates

- **Low T formation**
 - Aqueous 30-80°C
 - O isotopic ratios
 - Carbonates ↔ life process on Earth (low T)
 - Supported by O isotopic abundances
 - If formed in liquid → should see other hydrated minerals (missing)

- **High T formation**
 - Petrographic analysis suggests this method
 - Elemental abundances
 - Requires assumptions about chemical equilibrium (unverified)

Magnetotactic Bacteria?

- **Inorganic precipitation**
 - Neutral pH
 - Cannot explain Fe₃S₄
- **Simultaneous precipitation**
 - Requires high pH (alkaline)
 - Dissolved CO₃ → low pH (acid)
 - Acid should affect other minerals (not seen)
- **Biogenic disequilibrium**
 - Life process (?) as on Earth
 - Other processes?

Crystal Structure

- Inorganic minerals align when one solid forms on surface of another
- Movie @ left → (Fe,Mg,Ca)CO₃ formed on inclined fracture
- Magnetites in voids → oriented with respect to CO₃
- Magnetite crystals forms inside CO₃ by diffusion of atoms

Presence of Organics

- No organics from Viking
 - Mass spectrum totally flat at zero
- Should have Mars organics
 - Near C-rich asteroids
 - Non-circular craters
 - Only form from very oblique impacts
 - Implies a close source – in orbit
 - Phobos and Deimos are CM type material (organic rich)
- UV destruction in upper regolith layers
Alternate Ideas – Contamination?

<table>
<thead>
<tr>
<th>Compound/Atomic Mass</th>
<th>ALH84001</th>
<th>EET79001</th>
<th>Ice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthalene (128)</td>
<td>Not detected</td>
<td>Not detected</td>
<td>Present</td>
</tr>
<tr>
<td>Fluorene (166)</td>
<td>Not detected</td>
<td>Not detected</td>
<td>Present</td>
</tr>
<tr>
<td>Phenanthrene (178)</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Chrysene (228)</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Perylene (252)</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Anthanthrene (276)</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Anthanthracene (278)</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Coronene (300)</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
</tbody>
</table>

- EET79001 – only L-amino acids found (contaminates)
- Carbonates absorb PAHs from water (L. Becker expt)
 - ALH84001 was sitting on Antarctic ice for 13,000 yr

Presence of Organics

- PAH
 - Groups of benzene rings
 - Present on Earth in decayed organic material (e.g. coal)
- PAH found in ALH84001
 - Not caused by lab contamination
 - Not caused by Antarctic contamination
- Mass spectrum
 - Simpler than any on Earth
 - Different from meteorite mass spectra
 - Possible early life?

Don’t know character of ancient DNA

Consequences of ALH 84001

- Oldest rock from any planet
 - Shows ancient Mars crust very well preserved
- Stimulated an era of bioastronomy
 - Sequence of Mars Missions
 - Renewed vigor for life searches (e.g. President’s 2004 initiative)
- Stimulated new meteoritics research

Science is self correcting. … The goal is to know.
‘Possibly… perhaps… maybe’ are not firm answers, and feel-good solutions do not count.”
- The Hunt for Life on Mars

“The absence of evidence is not evidence for absence”
- Sagan