Atmospheric Processes

Karen J. Meech, Astronomer
Institute for Astronomy

Synopsis: Leading to Exploring Other worlds

Applications: Two Physical Effects
- Ozone Hole
 - UV creates and destroys O₂ in atm
 - Natural balance disturbed by man-made chemicals
- Green House Effect
 - Energy has to get to Earth’s surface
 - Heat (IR) is blocked by atm → causes an increase in T

Earth is a Complex System
- Interdisciplinary approach needed
- Don’t understand all feedback systems
- Models only as good as data

What are Implications for our “space ship”?

Endogenic Processes
- Clues to interior processes
- Heat loss mechanism
- Volcanos & tectonics
- Interaction with surface
- Recycling of materials

Surface Features
- Mountains / peaks / ridges
- Cracks, trenches
- Plains
- Causes: plate motion, volcanos, planetary shrinking, expansion . . .

What can we tell about a world & its potential for life just from its surface features?

Atmospheres Outline

- Purpose
 - Understand what effect an atmosphere has on a planet
 - Understand how to recognize that there is an atmosphere (now and in the past)
 - Understand the typical atmospheric structure
 - Understand that atmospheres change with time (physically and chemically – and why)

- Content
 - History and comparison of Terrestrial Planet Atmospheres
 - Atmospheric Structure & Composition
 - Aeolian (Wind Driven) Processes
 - Of or pertaining to an atmosphere (winds and liquids)
 - Some Examples

Mercury

- Pre-spacecraft data
 - 0.4 AU from sun
 - 28° max solar elongation
 - 19th century images “features” not real
 - Radar images
 - Early – not much detail (size of planet)
 - New – ice (!) at polar cap

- Space Era
 - Images: craters/tectonics
 - Magnetosphere
 - Thin atmosphere

Mercury Surface Features from Earth

- 1991 & 1994 Earth Radar data
 - Bright reflections
 - Coincide with Mariner 10 dark craters
 - Hints at ice

Mercury Moon Phobos

Mars Moon Phobos

Mars Surface (art)

Jupiter’s moon Europa Surface

Mars Surface (art)
1932 CO$_2$ discovered (spectra). H$_2$O had been assumed
1941 Greenhouse effect? \rightarrow hot surface
1955 Early H$_2$O oceans + liquid hydrocarbons; UV photodissociation \rightarrow oceans of crude oil
1955 Surface cool; oceans of H$_2$O & carbonic acid (H$_2$CO$_3$)
1961 Large 600K global desert w/strong winds (frictional heating)
1962 Sagan revives Greenhouse effect
1964 Planet accreted hot & dry – never had water

Mars
- Early Earth Observations
 - Schiaparelli (1877) & Antoniadi (early 1900s)
 - Observations of “channels” \rightarrow canals
 - Distinct albedo changes
 - Vegetation?
- Lowell Observatory
 - For “Astrobiology”!

Basic Atmospheric Structure
- Extent of Atmosphere
 - There is no “edge” to an atm
 - Scale Height (H)
 - Distance over which atm density decreases by 1/3 (1/e)
 - Earth’s H = 8.4 km
- $H = \frac{kT}{(\mu m_H)g}$
 - k = a constant (bolzmann)
 - T = Temperature [K]
 - μ = avg atomic weight of molecules
 - (relative to mass of Hydrogen)
 - m_H = mass of Hydrogen
 - g = planet’s gravity
Weather

- **Mercury**

 - “Atm” too thin for weather

- **Venus**

 - At surface probably not much – mild winds

- **Mars**

 - Southern hem winter: CO$_2$ condenses → 25% P drop → winds

 - Summer

 - warmed regolith → sublimating CO$_2$

 - Strong winds → Mars dust storms

 - Polar Caps record seasonal changes

Comparative Planetology

- Atlantic storm: 2/26/00

- Mars: N polar dust storm

- Mars: N hemisphere

- Sahara: 6/22/98

Gradational Processes

- **Saltation**

 - Wind lifts sand; bounces

 - Erosion 1 m from surface

 - Need higher winds on Mars: lower atm density

- **Large scale features**

 - Dunes

 - Yardangs

Comparisons – Aeolian: Mars

- **Victoria Crater** (MRO)

 - 800 m diameter

 - Sedimentary rocks inner wall

 - Sand dune fields

 - Wind blown dust

Moles Chasma (MRO)

Dunes in Valles Marineris-Meles Chasma (Mars)

Comparisons – Dunes in the SS

Earth

Titan
Water Erosion – Mars

- **Channels & Valley Networks**
 - Gradual flow?
 - Similar to riverbeds
 - Appear old (3.5 Gy) from cratering
- **Chaotic Terrain**
 - Large “flood channels”
 - Melting subsurface ice
 - Discharge 10^7-10^9 m3/s (Amazon 10^5 m3/s, Lake Missoula 10^8 m3/s)

Mars Chaos Regions

- Aram Chaos: E of Valles Marineris

Lake Missoula Flood

- Pleistocene lake (12,000 BC) blocked by glacier
- Water volume = Lake Erie + Ontario
- Ice dam burst: emptied in 48 hrs
 - “tidal wave” 2000 ft high @ 65 mph
 - Removed 200 ft of topsoil
 - Carved out “scablands”

Jokulsargljufur Canyon, Iceland

- Vatnajokull catastrophic flood

Other Atmospheres – Titan

- N_2 atmosphere
- Rich organics
- Near triple point of CH$_4$
- Organic “soup”
 - Life precursor chem?

Jupiter’s Large Moons

- Ganymede
 - Magnetosphere & thin atmosphere
 - Oxygen
 - Water ice sputtering
- Callisto
 - CO$_2$ exosphere
 - Outgassing
- Io
 - SO$_2$
 - Volcanic eruptions
 - Io plasma torus
Triton & Pluto

- **Triton**
 - N₂/CH₄ atmosphere
 - Frost in vapor pressure equilibrium with surface
 - P = 1.5 x 10⁻⁵ bar
 - Haze rises 13 km above surface
- **Pluto**
 - N₂/CH₄ atmosphere
 - Large seasonal variations

Atmospheric Processes

Consequences of an Atmosphere
- Protects planet from hazards
- Regulates surface heat
- Alters chemistry of planet
- Interacts with interior, alters geological

Atmospheric Structure
- Scale Height
- Distance to sun, gravity, composition

Atmospheres change in time
- Interacts with interior, alters geological

Evolutionary Paths

- Early sun less L?
- Liquid H₂O?
- Plate tectonics?
- T ins H₂O evap
- UV+H₂O → H₂+O
- H escapes
- O combines w/rock
- Volcanism → CO₂
- Runaway greenhouse
- Cooler initially
- Needed greenhouse to keep from freezing
- Plate tectonics
 - CO₂ dissolves in rain
 - CO₂ → carbonates
 - Falls to ocean floor
 - Subduction → melting
 - Volcanism resupplies
- Early sun less L
- Needed greenhouse
- 1 bar atm may have formed
- No plate tectonics
- Cooler core
 - CO₂ dissolves in rain
 - CO₂ → carbonates
 - No CO₂ recycling