Extra Solar Planetary Systems and Habitable Zones

Karen J. Meech, Svetlana Berdyugina

Lecture Overview
Our Galaxy has 200 Billion Stars, Our Sun has 8 planets. It seems like an awful waste if we are alone...

- Exoplanets
 - Definition
 - Detection techniques
 - Space missions
 - Kepler, Spitzer
 - Properties

- Habitable Zones
 - Definition reminder
 - Which stars can host habitable worlds?

What is a Planet?

- IAU Working Group on Extra Solar Planets
 - P. Butler, K. Meech
 - W. Hubbard, F. Mignard
 - P. Ianna
 - M. Kuenster, A. Quirrenbach
 - J. Lissauer, J. Tarter
 - M. Mayor, A. Vidal-Madrid

- Must orbit a star
- $M < 13 M_J$, deuterium burning limit
- $M > 13 M_J$, Brown Dwarf
- $M < 13 M_J$, free floating
- Sub-Brown Dwarf

Planets versus Brown Dwarfs?

IAU definition of a planet:
- Must orbit a star and clear its orbit
- $M < 13 M_J$, deuterium burning limit

Outliers:
- Brown dwarfs: $M > 13 M_J$
- Free floating planets: $M < 13 M_J$

Search for ExoPlanets

Techniques for detection and characterization
- Direct Imaging
- Astrometry
- Radial Velocity
- Transits
- Microlensing
- Disk Warping
- Transmission spectroscopy
- Secondary eclipses

Brightness Problem
- Our planets were known to the ancients, who watched them wander among the stars ... but
- Stars are a billion times brighter than the planet
- Hidden in the glare
Direct Imaging – Brightness Problem

Optical
- Flux: $F_{\text{sun}} = 10^8 F_{\text{Jup}}$
- Visual magnitude:
 - $V_{\text{sun}} = -26$, $V_{\text{Jup}} = -2.7$
 - $V_{\text{Jup}} = -6 @ 1$ AU

Infrared
- Flux ratio is $\sim 10^3$
- Select a specific spectral class to optimize

Direct Imaging – Resolution Problem

Small angle formula:

\[\theta = \frac{\text{Separation(AU)}}{\text{distance [pc]}} \]

1 radian $= 206265\,''$
1 parsec $= 206265$ AU

- Telescope resolution
 - $\theta = 1.22 \frac{\lambda}{D} \text{ (radians)}$
 - $\theta = 0.26 \frac{\lambda (\mu m)}{D (m)}$
 - $D = 10m, \lambda = 1\mu m, \theta = 0.025''$
 - Shorter λ, larger D

- Atmospheric turbulence
 - Seeing limit $0.5'' - 1''$
 - Adaptive optics

- Telescope support
 - Scattered light (rays, halos)
 - Off-axis telescopes

- α Centauri example
 - $r = 1.35 \text{ pc} = 1.4 \times 10^{16}$ m
 - Jupiter-like planet 5 AU
 - $\theta = 5 / 1.35 = 3.7''$
 - Only 50 nearby stars ok

Direct Imaging

IR Coronography
- HR8799
 - Three planet system
 - 10, 10, and 7 M_{Jup}
- β Pictoris
 - 0.4'' separation
 - $\sim 8 M_{\text{Jup}}$ at 8 AU
 - $T\sim 1500K$

Astrometric Technique

- Center of Mass [CM]
 - Planet and star orbit barycenter of the system
 - CM of system is usually inside star

- Kepler's 3rd law
 - $P^2 = C a^3$

 \[P = \text{Period of orbit [yrs]} \]
 \[a = \text{semimajor axis [AU]} \]

Sun's Wobble

- Combined effect
 - All planets
 - Seen from 10 pc
 - @ dist of α Cen (1.3pc) $CM = 0.004''$

Stars' Wobbles

- Proper motion
 - Stars move relative to the sun due to galactic location

- Parallactic motion
 - Earth orbits the Sun, and star apparent position "loops"

- Exoplanet effect
 - Small disturbances to star proper and parallactic motion

- Astrometric precision
 - Best 0.05'' in single image
 - Can get to 0.001'' from ground

- Problem – long time scale for detection
Radial Velocity

- Star moves back and forth → Doppler shifts
- Spectroscopy detects Doppler shifts → detection of an unseen companion
- Most exoplanets to date have been discovered with this technique
- Precision now less than 1m/s

Radial velocity: Quantities Determined

- Period
- Orbital radius
 - from Kepler’s 3rd law: \(P^2 = C a^3 \)
- Mass
 - actually \(M_p \sin(i) \)
 - only \(v \sin(i) \) known, where \(i \) inclination of orbit
 - \(i = 0^\circ \) face-on, \(i = 90^\circ \) edge-on
- Eccentricity (ellipticity)

Radial velocity method: best candidates

- Planet has small effect on star
 - Planets close to star easier to detect
 - Larger planets easier to detect

What Limits the Radial Velocity Technique?

- Stars can have intrinsic activity
 - “stellar quakes” & oscillations
 - These may be periodic signals
 - Places a fundamental limit on the RV accuracy (at <m/s level)

Transits = Eclipses

- Central transit duration, depends on
 - Stellar diameter
 - Stellar mass
 - Size of planet orbit
 - Inclination (where it crosses star)
- Transit depth → planet size
 - Change in brightness = \((d_p/d_{\text{star}})^2 \)
 - Probability is low for eclipse
 - only if planet is in line of sight between observer and star
 - But there are many stars . . .

Kepler Mission

- Goals
 - Frequency of terrestrial planets in HZ
 - Frequency of multiple planet systems
 - Distribution of \(a \), albedo, size, mass and density of hot jupiters
 - Properties of stars with planetary systems
- Mission
 - Transit method
 - 372 dy Earth trailing orbit
 - Duration 5-6 years
Kepler Planets

- ~70 confirmed systems
- > 2000 candidates
- Few super-Earths

Transit False-Positives

Astrophysical phenomena that can masquerade as a planetary transit

- grazing eclipsing binaries
- background eclipsing binaries

These require significant amount of ground-based observations to eliminate using radial velocity technique

Kepler 11 – 6 planet system

- Sun like star
- 8 Gy old
- 560 LY from Earth

Transits & Secondary Eclipses

Measure size of transiting planet, one radiation from star transmitted through the planet’s atmosphere

Transmission Spectroscopy

First clear detection of water and methane:

- HD 189733b:
 - hot Jupiter
 - mass 1.15 M_J
 - period 2.2 d
 - semimajor axis 0.03 AU

Swain et al. (2008)
Day and night side of planet

- Andromedae b
- Spitzer telescope obs.
- Temperature difference day – night side: 1400K
- Re-emission faster than global distribution of heat!
- Tidally locked (always same side points to star)

Evaporation of ExoPlanetary atmospheres

HD209458b observations from HST
- detection of an extended hydrogen envelope on (Lyman alpha emission)
- Atm extends > 200,000 km
- H is escaping from planet at 100 km/s
- Planet loses 10^7 gm/s
- Explains very few detections of planets close to their parent stars

Stratosphere or Carbon-rich?

Uncertainties in model atmospheres lead to uncertainties in chemical composition, and vice versa!

- WASP-12b: C/O ≈ 1?
- very hot Jupiter
- mass 1.4 M_J
- radius 1.7 R_J
- period 1.1 d
- semimajor axis 0.02 AU
- $T \approx 3000$K
- Not confirmed (2012)

Gravitational Lensing

Einstein’s General relativity
- Foreground star focuses light from distant star
- light of background star temporally enhanced
- Planet additional lensing effect
- Sensitive to small planets
- Immediate success without waiting one period
- But one-time event—statistical information only

Extrasolar Planetary Systems

- 800 exoplanets known within ~500 pc (2013)
- Many objects very close to central star
- Hot Jupiters, Neptunes, super-Earths, etc

Extrasolar Eccentricity Distribution

Most have high eccentricities
- Doesn’t meet Solar System formation expectations
- Need alternate ideas about formation

From: exoplanets.org
Metallicity of host stars

- Planet hosting stars are metal (heavy element) rich
- Consistent with accretion model for giant planet formation
- Higher fraction of heavy elements in disk
- More planetesimals
- Faster planet formation, more likely to have planets

\[\log(\text{Fe/H}) - \log(\text{Fe/H})_{\odot} \]

Fisher & Valenti (2005)

Hot Jupiter Formation

- In-situ Formation
 - Requires capture 0.7M J gas close to star (unlikely)
- Gravitational scattering
- Perturbations by other planets
- Tidal dissipation with star
- Gas drag and gravitational interactions with protoplanetary disk
 - Difference in forces from inner disk and outer disk
 - No Consensus yet

Examples: Super Earth – Gliese 876

- Discovery 1991-1994
- A. Wolszczan (Penn State)
- Pulsar Survey
- Pulsars – remnant stars
 - Supernova explosion
 - Core is dense enough to form neutron star
 - Conservation angular momentum \(\rightarrow \) spin up
 - Rotation period \(\rightarrow \) millisecond
 - Very strong B field
 - Sweeps past earth, emitting Radio radiation \(\rightarrow \) pulsars
- The Gravitational wobble of star caused by planets
 - Doppler delay / advance in timing of pulses

First 5-Planet System 55 Cancri

<table>
<thead>
<tr>
<th>Mass</th>
<th>Period [dy]</th>
<th>Orbit [10^6 km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-Earth</td>
<td>0.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Jupiter</td>
<td>14.7</td>
<td>17.9</td>
</tr>
<tr>
<td>Saturn</td>
<td>44</td>
<td>35.9</td>
</tr>
<tr>
<td>Saturn</td>
<td>260</td>
<td>116.7</td>
</tr>
<tr>
<td>Jupiter</td>
<td>14 yr</td>
<td>868</td>
</tr>
</tbody>
</table>

Pulsar Planets

- Discovery 1991-1994
 - A. Wolszczan (Penn State)
 - Pulsar Survey
- Pulsars – remnant stars
 - Supernova explosion
 - Core is dense enough to form neutron star
 - Conservation angular momentum \(\rightarrow \) spin up
 - Rotation period \(\rightarrow \) millisecond
 - Very strong B field
 - Sweeps past earth, emitting Radio radiation \(\rightarrow \) pulsars
- The Gravitational wobble of star caused by planets
 - Doppler delay / advance in timing of pulses
PSR B1257+12 in Virgo

First Extrasolar planet detections
- Not of interest for life . . .
- 3 planets Detected
 - Masses 0.02, 4.3, 3.9M_{Earth}
 - Periods 25, 66, 98 days
- Co-planar orbits
 - Must have formed in a disk

Terrestrial Planet Finder
- Will study all aspects of planets outside our SS
 - Formation & Disks
 - Suitability for life
 - Measurement of Atm composition
- Two phases - TPF-I, TPF-C
- Launch ? (Deferred indef.)
 - Resolved 25x25 pix image of Earthlike planet 10 pc away needs
 - 25 40m telescopes over a 360 km baseline

SIM – Space Interferometry Mission
- Quick facts
 - Earth trailing orbit
 - 5 years, launch 2015???
 - Pushed back 5 times
 - 4 µas accuracy, to mag 20
 - wavelength 0.4-0.9 microns
- Science Goals
 - Determine accurate star positions
 - Planet detection
 - Stellar astrophysics

TPF Resolution

TPF Atmosphere Studies
- R>1000 measurements
- Terrestrial planet atms
- 1 mo of integration
- looking for CH_{4}, N_{2}O

Where were we in 2013?
- As of 4/16/2013: 861 planets
 - 128 Multiple planet sys
 - 567 Hot Jupiters (>0.8 M_{Jup})
 - 52 Super Earths (<10 M_{Earth})
 - >300 Transiting planets
 - 96 Kepler candidates in HZ
 - Masses: 0.001-22.7 M_{Jup}

Our Planet hunting Neighborhood
Most of these planets found in other stars within about 300 light years from our Sun.
Other Planet Finding Missions

- **Gaia – ESA Mission**
 - Launch 2012
 - Map Galaxy to high accuracy (velocity, position)
 - Will discover many planets
- **Darwin (ESA)**
 - Similar to TPF
 - Funding ended in 2007
- **Beyond TPF – Life Finder**