Space Resources

Karen J. Meech, Astronomer
Institute for Astronomy

Overview

- Basic Economics
 - What do we need?
 - Where will we get resources?
 - How will we get them?
- Products needed
 - Propellants
 - Water, oxygen
 - Free metals
 - Bulk shielding
 - Energy

Solar Power from Space (SPS)

- Utilize “unlimited” solar Energy
 - Solar Array at GEO
 - Not constrained by weather
 - Could provide 1g % of US E requirements
- Distinct Stages
 - Collect solar energy
 - Convert energy to microwave power
 - Transmit power to Earth
 - Collect microwave power
 - Convert microwave to electricity

SPS System Disadvantages

- Large up-front costs
- Crowding of GEO
- Transportation to GEO → HLLV
 - O₃ destruction
- Filling microwave window (2-4 GHz)
 - Kills further SETI research
- Environmental impacts
 - Heating within beam pattern
 - Rectenna arrays: lg. area (% of CA)
May be a clean, economic E source

Energy Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Solar thermal</th>
<th>Solar photo</th>
<th>Wind</th>
<th>Ocean thermal</th>
<th>Solar SPS</th>
<th>Fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest $ per kW</td>
<td>1300</td>
<td>1100</td>
<td>750</td>
<td>1200</td>
<td>4000</td>
<td>400 - 500</td>
</tr>
<tr>
<td>Capacity</td>
<td>0.33</td>
<td>0.33</td>
<td>0.35</td>
<td>0.9</td>
<td>0.95</td>
<td>0.66</td>
</tr>
<tr>
<td>Develop probe</td>
<td>Hello-stat</td>
<td>Material</td>
<td>Rotor</td>
<td>Heat exchange</td>
<td>Launch</td>
<td>Safety</td>
</tr>
<tr>
<td>Dev $</td>
<td>$1B</td>
<td>$1B</td>
<td>$0.9B</td>
<td>$1B</td>
<td>$60B</td>
<td>$11B</td>
</tr>
<tr>
<td>Time</td>
<td>2 yr</td>
<td>7 yr</td>
<td>1 yr</td>
<td>2 yr</td>
<td>15 yr</td>
<td>2 yr</td>
</tr>
</tbody>
</table>

Energy Consumption

- Average power Use (1 yr)
 - World uses 15 TW; US 21%
 - At 315 Million, US is 4.4% of world
 - 1000 BTUs per hour = 0.293 kW
 - Current US renewable E in 2011: 11.7 %

US Energy use

- What is available
- US Energy use

US Renewable use

- Energy consumption by source vs. real GDP
- 1845-2001
We need to explore alternate Energy

- **Oil Reserves**
 - US has ~80 billion barrels
 - We use 25% of world production (6 billion / yr)
 - Lifetime
 - Of the top 17 oil producers only Canada, Venezuela have lifetimes > 115 yr
- **Natural Gas (25% US Energy)**
 - 200 trillion cubic feet (TCF)
 - Use: 20 TCF / year
 - Lifetime
 - a few decades left

Lunar Resources

- **Lunar History**
 - Collisional formation & melting → magma ocean
 - Differentiation
 - Light minerals (plagioclase) to surface
- **Basin formation**
 - Lava eruption (3.8-3.3 Gy)
 - Rich in Fe and Ti in basins
- **Reduced Impacts**

Other Lunar Components

- **Apollo Rock types**
 - KREEP
 - K = potassium
 - REE = rare earth elements
 - P = phosphorus
 - Orange soil (Apollo 17)
 - High volatile concentration
 - S, Zn, Pb
 - Volatiles → rare on moon
 - Solar wind implantation
 - N 50-150 ppm
 - H 2-60 ppm
 - Asteroid Debris
 - Metals 1000 ppm
- **Lunar Minerals**
 - Pyroxene [Ca,Mg,Fe]SiO$_3$
 - Plagioclase CaAl$_2$Si$_2$O$_8$
 - Olivine [Mg,Fe]$_2$SiO$_4$
 - Ilmenite FeTiO$_3$

Lunar Regolith as Shielding

- **Economics:** Must get shield material from space:
 - Shuttle cargo bay example
 - 3 m diameter, 15 m long
 - Shield to equivalent 1 Earth atm
 - 1 kg / m2
 - 1500 tons shielding
 - 50 shuttle flights (destroy O$_3$)
 - 1.5 Billion per launch
 - 75 billion to launch “shelter”
- **What is needed?**
 - No specific material → just mass
 - Best to get material out of smaller gravity well → the moon

Lunar Concrete

- **Terrestrial Cement**
 - Good heat resistance
 - Easy to cast
 - High abrasion resistance
 - Moderate strength
- **Cement Composition**

65% CaO	Calcium oxide – rich in limestone.
23% SiO$_2$	silica
4% Al$_2$O$_3$	alumina
< 1%	Other organic compounds

- **Process of manufacture**
 - Burn CaO (limestone) & sand → calcium silicate pebbles (clinker)
 - Grind clinker to um dust
 - Mix dust with H$_2$O
 - This hardens to cement

Alternative Processes to make Shielding

- **Melt lunar materials**
 - Focussed sunlight melts basalt at 700-1000K
 - Melt over mounds → scoop out interior materials
 - Production of glass bricks for building
 - Problem: Susceptible to cracking (brittle)
- **Microwave sintering**
 - Welds grains at contact points
 - Porous, light material
 - Needs to be sealed to hold pressure
 - AlO powder sintered at 1700°C for 2.5 min, 6 min
Concrete from the Moon

Lunar Oxygen

- Extraction Process
 - Heat ilmenite to 800°C with H₂ gas
 - FeTiO₃ + H₂ → TiO₂ + Fe + H₂O
 - H₂ – bring from Earth
 - Fe – construction use
 - H₂O Electrolysis → H₂, O
 - Recover H₂
 - O used for LOx
 - Cost ~5000 cal / gm O

- Alternate method
 - Melt regolith
 - Electric current –
 - collect O at anode
 - Cathode – metal rich alloy
 - 30,000 cal / gm O

- Oxygen is 42% by mass in lunar regolith
- Takes less E to break bonds in ilmenite

LunOx Industry

3He from Lunar Regolith

- ³He rare He isotope on Earth
 - Regolith: 10⁻¹⁵⁻¹⁰²⁰ atoms/cm³
 - Origin is solar wind implantation
 - Concentrated in ilmenite deposits
 - Nuclear fuel – no radioactive waste
 - Conventional fuels: 80% radioactive waste

- Value $4 billion/ton

Water on the Moon

Clementine Mission Profile
- Launch 1/25/94, End 5/7/94
- Map the moon in UV, Vis, near IR, Radar

Results
- Aitkin Basin (2500 km, 12 km deep)
- 15,500 km² permanently dark (T ~ 40-50K)
- Radar ice signatures → Ice 10⁻¹ m thick (sm lake)

Lunar Prospector: Discovery mission #2
- Neutron spectrometer
 - Neutrons scatter differently off water (H)
 - Effective for upper 0.5 meter of regolith

- Definitive signature of water
- Surprising: gardening remove ice! → comet impact supply?

Clementine Mineralogy
Example of Remote Prospecting

- How deep is an ilmenite (FeTiO₃) deposit we might use for LOx extraction?
- Ilmenite map → rich in craters
- Measure diameter of smallest craters with ilmenite
- Use depth-diameter relation
 - Larger craters penetrate deeper
 - This gives depth of mineral

Asteroid Compositions vs Distance

- Materials
 - O, C, S, N
- Trends
 - More processed – closer to sun
 - More primitive (water rich) farther away

H, O	20% water, 2% H
C	0% organic matter
N	0.1% N (polymers)
S	6% organic & elemental
Rare	Cl, F abundant

Asteroid Resources

Location, location, Location . . .

- Most are between Mars & Jupiter
- Resonances → delivery to Earth
 - When period of one body is an even multiple of another
 - Objects "meet" at same place in orbit
 - This enhances gravity perturbations
 - Knocks objects out of orbit
- Interesting groups for proximity
 - Amors – Mars orbit crossing, outside Earth orbit
 - Apollos – Earth crossers
 - Atens – Inside Earth orbit

Metal Extraction

- Lunar Metals
 - Rare
 - Mond Process
 - Reacting regolith with CO at 400-500K
 - Produces pure Fe, Ni
 - Economical
 - Asteroids
 - Differentiated cores → metallic asteroids
 - Mond process
 - Transport to Earth?

- Asteroids vs. the Moon

 - Water Extraction
 - Heating 250-300°C
 - Uses 10% E needed on moon for ilmenite
 - Hydrogen
 - Moon → require H₂ from Earth
 - Asteroids provides 0.125 tons H₂ per ton of material
 - Nitrogen
 - Found in primitive asts
 - Not found on moon
 - Recovered using O₂ and H₂ gas
 - Byproduct: CH₄ (fuel)
 - Metals
 - Low abund on Moon
 - Economic advantage for asteroids
Economics – Consider Δv

- Δv at LEO → escape trajectory
- Δv at arrival – match asteroid orbit v
- Δv to land (small, low gravity)
- Δv to take off (small)
- Δv to initial Earth intersect trajectory
- Aerobraking at Earth to slow v
- Small Δv to lift perigee from Earth atm and match space station velocity
- Launch windows
- Transport time

<table>
<thead>
<tr>
<th>Body</th>
<th>Δv</th>
<th>Time of Flight</th>
<th>Δv</th>
<th>Time of Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asteroids</td>
<td>4.45 km/s</td>
<td>210 days</td>
<td>0.00 km/s</td>
<td>430 days</td>
</tr>
<tr>
<td>CBO 915</td>
<td>5.30 km/s</td>
<td>210 days</td>
<td>0.00 km/s</td>
<td>430 days</td>
</tr>
<tr>
<td>CBO 950</td>
<td>5.30 km/s</td>
<td>210 days</td>
<td>0.00 km/s</td>
<td>430 days</td>
</tr>
<tr>
<td>CBO 970</td>
<td>5.30 km/s</td>
<td>210 days</td>
<td>0.00 km/s</td>
<td>430 days</td>
</tr>
<tr>
<td>Moon</td>
<td>6.09 km/s</td>
<td>3 days</td>
<td>0.00 km/s</td>
<td>360 days</td>
</tr>
<tr>
<td>Mars</td>
<td>4.88 km/s</td>
<td>270 days</td>
<td>0.00 km/s</td>
<td>270 days</td>
</tr>
</tbody>
</table>

All values in Δv are non-zero. Asteroids in the Sun system are also non-zero because of the solar environment.

LUNAR FERRY OPERATIONS

- Launch windows
- Transport time

LUNAR MISSILE DESIGN /

AEROSPACE...

NASA