Astrobiology 740
Follow the Ice
January 13, 2006

Dr. Karen J. Meech, Astronomer
Institute for Astronomy, Univ. Hawaii
meech@ifa.hawaii.edu; (808) 956-6828
Moon-Mars Initiative

- Implement sustained human / robotic exploration of the solar system and beyond;
- Extend human presence across the solar system,
 - Human return to the Moon by 2020,
 - Preparation for human exploration of Mars & beyond
 - Search for evidence of life
- Develop the necessary innovative technologies, knowledge, and infrastructures
 - Conduct advanced telescopic searches for Earth-like planets and habitable environments around other stars
- Promote international and commercial participation in exploration
We are Aqueous Beings....

- Water is the medium for life’s chemistry
- Our cells are mostly water
- Water is a liquid for large ΔT
- Water ice floats
- Water affects Earth’s energy budget
- Water involved in geochemical reactions \rightarrow atm chemical balance
- Water in Earth’s mantle affects internal melting behavior
Habitable Zones

Depends on

- Planet properties: albedo, atmospheric density & composition, rotation
- Age of star – luminosity increases with time
- Planetary orbit
- Internal heat sources

Distance from the central star where the equilibrium T allows for the existence of liquid water
Our Solar System

\[
\frac{F_{\odot}(1 - A)}{r^2} = \beta \sigma T^4
\]

<table>
<thead>
<tr>
<th>Planet</th>
<th>Albedo</th>
<th>Radius</th>
<th>Distance</th>
<th>Eccen</th>
<th>TBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.119</td>
<td>2439</td>
<td>0.3871</td>
<td>0.206</td>
<td>445</td>
</tr>
<tr>
<td>Venus</td>
<td>0.750</td>
<td>6052</td>
<td>0.7233</td>
<td>0.007</td>
<td>238</td>
</tr>
<tr>
<td>Earth</td>
<td>0.306</td>
<td>6378</td>
<td>1.0000</td>
<td>0.017</td>
<td>261</td>
</tr>
<tr>
<td>Mars</td>
<td>0.250</td>
<td>3397</td>
<td>1.5237</td>
<td>0.093</td>
<td>215</td>
</tr>
<tr>
<td>(Ceres)</td>
<td>0.030</td>
<td>456.5</td>
<td>2.7671</td>
<td>0.077</td>
<td>170</td>
</tr>
<tr>
<td>Jupiter</td>
<td>0.343</td>
<td>71398</td>
<td>5.2028</td>
<td>0.048</td>
<td>113</td>
</tr>
<tr>
<td>Saturn</td>
<td>0.342</td>
<td>60000</td>
<td>9.5380</td>
<td>0.056</td>
<td>83</td>
</tr>
<tr>
<td>Uranus</td>
<td>0.300</td>
<td>26200</td>
<td>19.191</td>
<td>0.046</td>
<td>60</td>
</tr>
<tr>
<td>Neptune</td>
<td>0.290</td>
<td>25225</td>
<td>30.061</td>
<td>0.010</td>
<td>48</td>
</tr>
<tr>
<td>Pluto</td>
<td>0.500</td>
<td>1151</td>
<td>39.529</td>
<td>0.248</td>
<td>38</td>
</tr>
</tbody>
</table>
Cosmic Solar System
History: Delivery of Water

>4.6 billion yr
ISM dark cloud

Planets grow

Protoplanetary disk

Cometary Delivery
Range of Temperatures

- Psychrophiles: Cold lovers (T~0-20°C)
 - Survive freeze/thaw, Reproduce 2°C
- Habitats on Earth
 - Soils, Deep ocean water, Sea ice
Ice / Water Inventory on Earth

- **Arctic** – 4 km deep ocean, covered by ice
- **Antarctic** – up to 4 km deep ice surrounded by oceans

<table>
<thead>
<tr>
<th>Snow & Ice in N Hem</th>
<th>Area (10^6 km^2)</th>
<th>Vol (10^6 km^2)</th>
<th>Sea Equiv. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenland</td>
<td>1.73</td>
<td>3.0</td>
<td>7.5</td>
</tr>
<tr>
<td>Other</td>
<td>0.532</td>
<td>0.13</td>
<td>0.32</td>
</tr>
<tr>
<td>Sea Ice (N)</td>
<td>8.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antarctica</td>
<td>13.0</td>
<td>29.4</td>
<td>73.5</td>
</tr>
<tr>
<td>Sea Ice (S)</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material from T. Thorsteinsson
Ice on Earth

- Extent of Eurasian ice sheet during glacial max 20,000 yr

Pleistocene
- Last 2-3 Myr
- 20 interglacial periods
- Each last 100-150 x 10^5 yr

Vatnajokull Ice cap, Iceland

Material from T. Thorsteinsson
Antarctica

- **Physical characteristics**
 - 5.4×10^6 sq mi
 - 7000 ft elevation
 - 75% all fresh water
 - $T_{avg} = -70^\circ F$ (low $-128.6^\circ F$)
 - Winds up to 300 km/hr

- **Historical**
 - Coal beds \rightarrow Pangea 2 Myr

- **Dry Valleys**
 - 1901 Expedition
 - Penetration 1978
 - H_2O just above freezing \rightarrow greenhouse effect
 - Enriched from spring runoff
Isolated Environments

- **Lake Hoare – Taylor Valley**
 - Environment much like Mars
 - Permanent ice cover
 - Life Forms
 - Microbial mats
 - Increased oxygen levels; 1% sunlight
 - Algae draw Fe, S and calcite from water

- **Lake Vostok**
 - Most isolated aquatic environment on Earth
 - Largest of 70 subglacial lakes
 - Cut off 35-40 Myr ago
 - 1500 km from coast,
 - 3500m elevation
 - $T_{\text{air}} = -89^\circ\text{F}$, $T_{\text{lake}} = -3^\circ\text{C}$
Lake Vostok

- 1998 Russian Core \rightarrow 3.623 km
 - Living organisms from 1500-2750 m (2-5 x 10^5 yr old)
 - Low population diversity
 - Utilized dissolved organic C and O migrating through ice
 - 4 climate changes 20,000 to 100,000 yr periods ([CO$_2$])
Water on the Moon

- Lunar Prospector: Neutron spectrometer
- 10-300 million tons water ice in shadowed polar regions
Mars Scenarios

Current conditions
- 95% CO₂, 3% N₂
- P 0.006 bar, T_{avg} ≈ 233K
- Lack of O₃

Presently, liquid H₂O isn’t stable on Mars surf

Amount of H₂O
- Atm – 1-2 km³ (10μm layer)
- Polar caps 4x10⁶ km³ (30 m layer)

Mars Viking Results
- No organics to 1 ppb
- Mars is a cold polar desert

Life Oases?
- Hydrothermal systems
- Subsurface reservoirs
- Life in Ice
Where’s the Water on Mars?

- Mars Global Surveyor
 - Polar ice inventory, gullies
 - Mola Altimetry (N ocean?)
 - Hematite (Fe_2O_3)
- Mars Odyssey
 - γ-ray spectrometer: subsurface H_2O
- Mars Exploration Rovers
 - Launch Jun-Jul ’03,
 - Arrive Jan 04
Mars Gullies & Earth Analogs

- Seepage landforms not cratered \rightarrow geologically young
- Resemble terrestrial gullies (landslide promoted by ground water flow)
Hematite Fe_2O_3

- **Product of aqueous mineralization**
 - Hot water moves through Fe-rich rocks \rightarrow dissolve Fe
 - Water cools, Fe-minerals precipitate
- **Often associated with hydrothermal vents on Earth**
- **Implies sedimentary rocks**
- **Implies long-term H$_2$O stability**
- **Image (MGS)**
 - Meridani Planum
 - 1500x1200 km
Opportunity – Bodies of Water

- Habitability at 2 sites: geological, climate, aqueous alteration records
- Drilled rocks \(\rightarrow\) sulfates
 - Long term standing water
- “Blueberries” – Hematite rich
- Wave flow patterns
Mars Mountain Glaciers?

Western Olympus Mons, Mars

Alaskan Glacier, Earth
Europa

- **Physical Characteristics**
 - Diameter 3,138 km
 - $T_{\text{surf}} = 128$K
 - $\rho = 3 \text{ gm cm}^{-3}$, $g = -0.135 \, g_{\text{earth}}$

- **Tidal heating**
 - $F = GMm/r^2$
 - Differential tide raising force
 - dF proportional to $r^{-3} \, dr$

- **Susurface Ocean**
 - Magnetic induction \rightarrow liquid
 - ~100 km deep
 - Beneath > 20 km thick icy shell

Inside Europa
- Icy surface
- Subsurface may be a liquid ocean or a warm, convective layer of ice.
- Rocky interior

Source: NASA
Evidence for Ocean

- Melt through thin shell
- Diapirism – ice convection partly melts surface ice
- Icy spreading center analog
- Warm buoyant ice from below

- Diapirism – ice convection partly melts surface ice
- Domes ~10 km in diameter
Plausible sources of free energy and biogenic elements exist
- Sub-surface ocean
- Tidal stretching – heating
- Organics (spectra)

Geological processes permit surface-ocean communication
Cassini-Huygens Titan Mission
- N₂ – CH₄ atmosphere
- UV from sun produces other organics (ethane, acetylene…)
- Organics must precipitate → need to resupply CH₄
- CH₄-ethane rain and lakes?

Material from R. Pappalardo
- Dark Surface
- Mixture of water-ice and hydrocarbon-ice
- Possible evidence of fluvial erosion at base of “rocks”
Ices & Liquids on Titan?

- Drainage channels from 20 km elevation
- Hydrocarbon Lake at S Pole
Ice Physics

Temperature Scales

- Kelvin – absolute scale – atomic motion
- \(C = \frac{5}{9} (F - 32) \)
- \(K = C + 273 \)

<table>
<thead>
<tr>
<th>Scale</th>
<th>H(_2)O Freeze</th>
<th>H(_2)O Boil</th>
<th>(\Delta T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fahrenheit</td>
<td>32</td>
<td>212</td>
<td>180</td>
</tr>
<tr>
<td>Centigrade</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Kelvin</td>
<td>273</td>
<td>373</td>
<td>100</td>
</tr>
</tbody>
</table>
Water – Features Relevant to Ice

- Bent molecule (104.52°) – H Bond
 - Dipole moment
 - Tetrahedral Crystal structure
 - Expands upon freezing (less dense)
- Negative slope on melting curve
 - Le Chatlier Principle
- Triple Point [S.M.O.W.]
 - P = 611.657 Pa (0.006 bar)
 - T = 273.16 K (0.16°C)
 - D₂O: 661 Pa, 276.82K

1 bar = 10^5 Pa = 10^5 N/m^2
1 atm = 101325 Pa
Water Ice Physics

- Exists in 13 crystalline phases (diff T & P)
 - Phase I: P < 2700 atm
 - Ih – hexagonal
 - Ic – cubic (low T, low P; metastable)
 - High P forms: II to XI
- Amorphous Ice
- Clathrates
Amorphous Ice

- Forms at low T → insufficient E for crystal structure
- Physical Properties
 - Large voids: trapped gases
 - Gases released between 35-120K
 - Annealing
 - 38-68K – transition from $l_ah \rightarrow l_al$
 - Beginning at 90K → l_c (exothermic)
- Two forms
 - High Density, l_ah
 - Low Density, l_al
Clathrate Hydrates

- Crystalline framework of H-bonded H$_2$O molecules trapping guest molecules
- Guests don’t affect the chemistry
 - Released upon sublimation of water
 - Cages unstable without guests
 - Some physical properties are altered
 - Some clathrate formation not possible at low T and P
 - Stability: low T (< 273K), moderate to high P (100 atm)

- Importance
 - May store most SS inventory: CO, CO$_2$, CH$_4$
 - Catastrophic destabilization due to T\uparrow, P\downarrow
 - Collapse & flow features
 - Outgassing
 - Greenhouse gas budgets
Clathrate Hydrates

- **Type I**
 - 46 \(\text{H}_2\text{O}\) molecules
 - 2 small cages, 6 large
 - 12- and 14- sided polygons
 - Traps in ratio 1/7
- **Type II**
 - 126 \(\text{H}_2\text{O}\) molecules
 - 16 small cages, 8 large
 - 14- and 16- sided polygons
 - Traps in ratio 1/17

Clathrates in the Solar System

- \(\text{CH}_4\) – marine sediments – by 2x exceeds other fossil fuel sources
- \(\text{CO}_2\) – sequester \(\text{CO}_2\) in ocean seafloor from atm (climate)
- Destabilization on Mars & Europa – chaotic terrain?
- \(\text{CH}_4 / \text{N}_2\) on Triton – geysers
- Air – polar ice sheets – info on atmosphere up to \(10^6\) yr ago
Ice Regimes – Interior Pressures

- \(P_c = 2\pi G \rho^2 (R^2 - r^2)/3 \)
- \(G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2 \)
- \(\rho = \text{density, kg/m}^3 \)
- \(R = \text{radius, m} \)

<table>
<thead>
<tr>
<th>Regime</th>
<th>(\rho) ([\text{g/cm}^3])</th>
<th>Size ([\text{km}])</th>
<th>(P) ([\text{bar}])</th>
<th>Dust:Ice</th>
<th>Ices</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISgrains</td>
<td>0.1</td>
<td>10^{-10}</td>
<td>—</td>
<td>2:1?</td>
<td>High den. amorph</td>
</tr>
<tr>
<td>Comet</td>
<td>0.5-1?</td>
<td>1-10</td>
<td>0.0003-0.1</td>
<td>2:1?</td>
<td>lh, lc, amorphous</td>
</tr>
<tr>
<td>KBO</td>
<td>0.5-1?</td>
<td>(10^2-10^3)</td>
<td>3.5-1400</td>
<td>2:1?</td>
<td>lh, II, clath, amorph</td>
</tr>
<tr>
<td>Europa</td>
<td>2.97</td>
<td>1569</td>
<td>(3 \times 10^4)</td>
<td></td>
<td>lh, II, VII, VIII, clath</td>
</tr>
<tr>
<td>Triton</td>
<td>2.07</td>
<td>1350</td>
<td>(1 \times 10^4)</td>
<td></td>
<td>lh, II, clathrates</td>
</tr>
<tr>
<td>Mars Ice</td>
<td>1-1.6</td>
<td>3</td>
<td>300</td>
<td><100 ppm</td>
<td>lh, clathrates</td>
</tr>
<tr>
<td>Glacier</td>
<td>0.92</td>
<td>3</td>
<td>300</td>
<td>ppm</td>
<td>lh, clathrates</td>
</tr>
</tbody>
</table>

- Phase changes: volume changes \(\rightarrow \) fractures
- Amorphous \(\rightarrow \) lc, exothermic \(\rightarrow \) volatile release
- Clathrate destabilization \(\rightarrow \) outgassing
Comet Expectations

- **Amorphous ice**
 - Formation T: 30-100K

- **Crystalline ices**
 - Solar heating: amorphous \rightarrow crystalline transition peaking at 137K
 - Balance with cosmic ray processing

- **Lack of Clathrates**
 - Small size, low central pressures
 - Release of volatiles in excess of clathrate capacity
 - Not necessary to explain activity!
Comet Formation

- Ices in comets condensed $T < 100$K
 - Amorphous form traps other gases
 - Amounts depend on r
- Release of gases
 - 120-137K amorphous \rightarrow crystalline phase
 - Annealing (30-120K)
 - $l_c \rightarrow l_h$ \sim 150 K
 - Sublimation starts 160-180K
Sublimation of Volatiles?

- Delsemme’s original work: albedo too high
- Water: $F_\odot(1 - A) \frac{1}{r^2} = \beta \left[\epsilon \sigma T^4 + L(T) \frac{d m_s}{d t} + \kappa(z, T) \frac{\partial T}{\partial Z} \right]$
Activity in Comets at Large r

- **All Comets active $r \downarrow$**
 - C/1999 J2 $r=7.11\text{AU}, r=7.81\text{AU}$
 - C/2001 G1 $r=8.32\text{AU}, r=10.26\text{AU}$
 - C/2003 A2 $r=11.5\text{AU}, r=11.43\text{AU}$

- **All are dynamically new**
 - C/1999 J2 $1/a_{\text{orig}} = 20$
 - C/2001 G1 $1/a_{\text{orig}} = 35$
 - C/2003 A2 $1/a_{\text{orig}} = 45$

Material from Meech et al, in prep.
Mechanisms of Activity

Material from Meech et al, in prep.
Complications: Heat Transport in Real Nuclei

- Solve the heat conduction equation
 \[
 \rho(z) c(z,T) \frac{dT}{dt} = \frac{d}{dz} [\kappa(z,T) \frac{dT}{dz}]
 \]
 - Boundary condition: Energy Balance Equation
 - Heat sources:
 - Solar radiation – cyclic
 - Radioactivity – declining
 - Crystallization – transient, front induced

- Approximations
 - Ice Thermal properties very different
 - \(\kappa_a < \kappa_c \) (4 orders of magnitude) \((a=amorphous, c=crystalline) \)
 - \(\kappa_a \propto T \) and \(\kappa_c \propto \frac{1}{T} \)
 - \(\kappa = \) rate of heat transfer through medium [W m\(^{-2}\) K\(^{-1}\)]
Heat Conduction in Porous Media

- Pores reduce thermal conductivity
 - Conduction by radiation
 - Conduction by vapor sublimation → recondensation
 - Releases heat, warming colder areas
 - Reduces the thermal gradient
 - Sintering → decreases porosity

Porosity: 7.5% 13% 15% 22%

![Graph showing log correction factor vs. porosity]

Interior Pressures

- Interior structure \rightarrow affects surface features
- Modeling the structure of a body
 - Hydrostatic equilibrium $\frac{dP}{dr} = -GM(r)\rho(r)r^{-2}$
 - Mass continuity $\frac{dM}{dr} = 4\pi r^2 \rho(r)$
 - Equation of state of material (relation between \(P, T \) and \(\rho \) for a material). Approx:
 - $P = K_0 B^{-1}[(\rho/\rho_o)^B - 1]$
 - $K_0 = 2-3 \times 10^{11} \text{ Nm}^{-2}$
 - $B = \frac{dK}{dP} \sim 2.2-4$;
 - K = bulk modulus
- Heat conduction equation
Terrestrial Ice Masses

- **Types of Ice**
 - Polar Ice: $T < T_{fr}$ throughout
 - Temperate: at or below T_{fr} except top 15 m
 - Polythermal: part polar, part temperate

- Temperate: winter cold wave eliminated by latent heat of re-freezing
- Polar:
 - T below 15m = T_{mean}
 - Ice warms near bedrock from geothermal heating

Material from T. Thorsteinsson
Densification of Ice

- Physical Processes
 - Rounding & settling of crystals,
 - Increase in crystal size
 - Formation of bonds between crystals
 - Decrease of air space

- Densities [kg/m^3]
 - Snow 50-400
 - Firn 400-830
 - Glacier 830-920

- Rate of transformation
 - 0°C 15-35m \(\rightarrow\) 10-20 yr
 - -30°C 70m, 200 yr
 - -55°C 110m, 2000 yr

No air bubbles due to pressure of overlying ice
Volume expansion due to warming at bedrock

Material from T. Thorsteinsson
Ice Changes

- Air bubble size decrease, Antarctica
- Fresh snow crystal
- Single ice crystals from glacier ice (Mendelhall glacier, AK)

Material from T. Thorsteinsson
Grain Growth, Clathrates

- Pressure differences across crystal boundaries result in large grains growing, small ones shrinking.
- Growth rate very T dependent prop to $e^{-Q/RT}$
- Ice clathrates can form at high P (depth)

500 year old ice at 130 m depth.
Average diam: 2 mm

100,000 year old ice at 2850 m depth.
Average diam: > 2 cm

Material from T. Thorsteinsson
Ice Regimes – Interior Pressures

- $P_c = 2\pi G \rho^2 (R^2 - r^2)/3$
- $G = 6.67 \times 10^{-11}$ Ntm2/kg2
- $\rho = $ density, kg/m3
- $R = $ radius, m
- π

<table>
<thead>
<tr>
<th>Regime</th>
<th>ρ [g/cm3]</th>
<th>Size [km]</th>
<th>P [bar]</th>
<th>Dust:Ice</th>
<th>ices</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS grays</td>
<td>0.1</td>
<td>10^{-10}</td>
<td>-</td>
<td>-</td>
<td>High den. amorph</td>
</tr>
<tr>
<td>Comet</td>
<td>0.5-1?</td>
<td>1-10</td>
<td>0.0003-0.1</td>
<td>2:1?</td>
<td>lh, lC, amorphous</td>
</tr>
<tr>
<td>KBO</td>
<td>0.5-1?</td>
<td>10^2-10^3</td>
<td>3.5-1400</td>
<td>2:1?</td>
<td>lh, II, clath, amorph</td>
</tr>
<tr>
<td>Europa</td>
<td>2.97</td>
<td>1569</td>
<td>3×10^4</td>
<td>-</td>
<td>lh, II, VII, VIII, clath</td>
</tr>
<tr>
<td>Triton</td>
<td>2.07</td>
<td>1350</td>
<td>1×10^4</td>
<td>-</td>
<td>lh, II, clathrates</td>
</tr>
<tr>
<td>Mars Ice</td>
<td>1-1.6</td>
<td>3</td>
<td>300</td>
<td><100 ppm</td>
<td>lh, clathrates</td>
</tr>
<tr>
<td>Glacier</td>
<td>0.92</td>
<td>3</td>
<td>300</td>
<td>ppm</td>
<td>lh, clathrates</td>
</tr>
</tbody>
</table>

- Phase changes: volume changes \rightarrow fractures
- Amorphous \rightarrow lC, exothermic \rightarrow volatile release
- Clathrate destabilization \rightarrow outgassing