Institute for Astronomy
2680 Woodlawn Drive
Honolulu, HI 96822
(808) 956-6989
9-5pm M-F HST
Email:
taberger@hawaii.edu

Travis Berger

Astronomy Graduate Student

  • RESEARCH INTERESTS : Stars and Exoplanets
  • GRADUATE WORK : Ph.D. Candidate, University of Hawaii at Manoa
  • ALMA MATER : Astrophysics (BS), University of North Carolina at Chapel Hill

About Me

PROFESSIONAL PATH

Aloha! I'm an astronomy graduate student studying at the Institute for Astronomy at the University of Hawaii at Manoa. I'm primarily interested in the demographics of stars and the exoplanets that they host. I've participated in a wide variety of research projects in a number of astronomical fields, from the analysis of spectra of main sequence stars within our galaxy to spectra of blue supergiants in other galaxies. I have also dabbled a bit in radio astronomy.

I am currently conducting research for my thesis, which is focused on determining the radius, metallicity, and age demographics of Kepler exoplanets by leveraging the ultra-precise parallaxes provided by Gaia Data Release 2. Outside of work, I enjoy hiking, snorkeling, surfing, watching Carolina basketball, playing video games, and fiddling with technology. If you would like to know more information about my work, including my published papers, please keep scrolling!

0

First Author Papers

0

Total Papers

0

Years Studying

0

k Stars Analyzed

Research Experience

WORK SO FAR

GRADUATE RESEARCH ASSISTANT

INSTITUTE FOR ASTRONOMY, UNIVERSITY OF HAWAII AT MANOA
AUGUST 2015 - PRESENT

In my first year at UH, I worked with Dr. Andrew Howard and Dr. Ann Boesgaard to analyze spectra of 1305 Kepler stars for the amount of lithium (A(Li)) in their atmospheres. Comparing A(Li) and exoplanet radii, my work provides evidence that small planets decrease in size as they age. Click here to see the paper.

In my second year at UH, I worked with Dr. Rolf Kudritzki on analyzing spectra of A supergiants stars in IC 1613, a local group dwarf irregular galaxy, to determine the metallicity of and an independent distance to the galaxy. During this project, I learned IDL and how to determine the spectroscopic parameters (effective temperatures, surface gravities, and metallicities) of stars and extragalactic distances. From a comparison of the distribution of metallicities with neutral hydrogen gas, I investigated the galactic chemical evolution of IC 1613. Click here to see the paper. I also worked with Dr. Eugene Magnier on eclipsing binaries in the Andromeda Galaxy. In this project, I produced Keck-DEIMOS multi-object slitmasks and observed eclipsing binaries and additional A supergiant stars to measure the most precise distance yet to the Andromeda Galaxy.

I am currently conducting research for my thesis, Precise Radius, Metallicity, and Age Demographics of Exoplanets in the Gaia Era, with advisors Dr. Daniel Huber, Dr. Jennifer van Saders, and Dr. Eric Gaidos, and my first thesis paper, Revised Radii of Kepler Stars and Planets Using Gaia Data Release 2, is linked here.

First Author Papers:

Other Papers:

UNDERGRADUATE RESEARCH ASSISTANT

UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
JUNE 2012 - AUGUST 2015

During my time at UNC, I engaged in advanced undergraduate research that supplemented my physics and astronomy-heavy undergraduate curriculum. In my first summer, I participated in the annual Educational Research in Radio Astronomy (ERIRA), where I learned how to observe radio targets using a 40-foot transit telescope, calculate the blackbody temperature of the moon, determine the rotation curve of Andromeda using different spectral frequencies, and utilize Fourier transforms to detect the radio signature of a distant pulsar.

I joined Dr. Daniel Reichart's research team following the summer to work on a single-dish mapping algorithm in C++, Python, and MATLAB. I utilized a variety of numerical methods from Fourier transforms to wavelets to piecewise linear regression, in an attempt to model and eliminate artificial large-scale structures such as voltage drift. In addition, I produced interpolated, photometry-ready 2D maps from the 1D scan-separated data.

Undergraduate Honors Thesis:

Portfolio

MY WORK

Education

ACADEMIC CAREER

PH.D. CANDIDATE

UNIVERSITY OF HAWAII AT MANOA - ASTRONOMY
THESIS IN PROGRESS

Successfully defended thesis proposal. Focus is on the radius, metallicity, and age demographics of Kepler exoplanets with the use of Gaia Data Release 2.

MASTER'S DEGREE IN SCIENCE

UNIVERSITY OF HAWAII AT MANOA - ASTRONOMY
AWARDED IN DECEMBER 2017 (2 YEARS)

Completed and published first (Identifying Young Kepler Planet Host Stars from Keck-HIRES Spectra of Lithium) and second (Quantitative Spectroscopy of Supergiants in the Local Group Dwarf Galaxy IC 1613: Metallicity and Distance) year research projects, succeeded in required and relevant coursework, and passed the qualifying exam.

BACHELOR'S DEGREE IN SCIENCE

UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL - ASTROPHYSICS
GRADUATED IN MAY 2015 (4 YEARS)

Completed an Undergraduate Honors Thesis (The Skynet Algorithm for Single-Dish Radio Mapping) and graduated with Highest Honors and highest distinction (GPA > 3.80).

The important thing

is to not stop questioning. Curiosity has its own reason for existing.

-Albert Einstein