A Volume-Limited Search for L/T Transition Brown Dwarfs with the Pan-STARRS 1 and WISE Surveys

William M. J. Best1, Michael C. Liu1, Eugene A. Magnier1, Kimberly M. Aller1, Niall R. Deacon2, Trent J. Dupuy3

1University of Hawai‘i, 2MPIA, Heidelberg, 3Smithsonian Astrophysical Observatory

\begin{itemize}
\item We have searched \textasciitilde30,000\ deg2 in the Pan-STARRS 1 (PS1) 3\pi and WISE All-Sky surveys for brown dwarfs in the L/T transition.
\item Previous large-scale searches have been incomplete for L/T transition dwarfs because these objects are faint in optical bands, and have near-infrared colors that are difficult to distinguish from background stars.
\item We have cross-matched the PS1 (optical) and WISE (mid-IR) catalogs to produce a unique multi-wavelength database.
\end{itemize}

\section*{Why L/T Dwarfs?}

- Only \textasciitilde20\% of known brown dwarfs are in the L/T transition (spectral types \textasciitilde L6–T5).
- Previous all-sky searches based on 2MASS have found few L/T objects.
- Objects undergo drastic spectral changes across the L/T transition (\textasciitilde 1300–900 K), which models find difficult to reproduce.
- Weather-related periodic variability has been observed in some L/T dwarfs.
- A larger, well-defined sample of L/T transition dwarfs will improve constraints on the substellar mass function, and provide more templates for brown dwarf atmospheric models.

\section*{Volume-Limited at 25 pc}

- We want to characterize the L/T transition population within 25 pc, the same volume as the PMSU M dwarf survey and the Gliese catalog.
- Empirically, we find that ultracool objects with $W1 < 2.833(W1-W2) + 12.667$ have photometric (W2) distances < 25 pc.

\section*{New Discoveries}

- We have obtained near-IR SpeX spectra for 138 candidates and confirmed that 82 are new L/T transition dwarfs, 33 with 25 pc.
- These new discoveries will...
 - substantially improve the completeness of the 25 parsec L/T dwarf census;
 - refine the constraints on the local substellar mass function;
 - help us to better understand and model the evolution of brown dwarf atmospheres through the L/T transition.

\section*{Comparison to Previously Known Objects}

- Colors of spectroscopically confirmed discoveries. The PS1 y-band helps to distinguish late L-T dwarfs from earlier-type objects. Shaded regions show colors excluded by our search.

\section*{PS1 3\pi Survey}

PS1 has mapped the entire sky north of Dec = -30\° several times to date in five grizy filters, including y down to \textasciitilde20.3 mag (single epoch), equivalent to \textasciitilde1 mag deeper than SDSS. PS1 3\pi is mapping the entire search area twelve times over 4 years (finishing in March 2014) in five filters, enabling internal proper motion and parallax measurements.

\section*{Search Status}

Our survey is nearly complete, and we expect to finish the remaining observations later this month.

Will Best is a third year graduate student at the University of Hawai‘i.

wbest@ifa.hawaii.edu

AAS, Jan 2014, Washington, DC