One method to detect extrasolar planetary systems is to deduce the perturbations of planets on the observed circumstellar dust disks. Our Solar System, with its known configuration of planets, provides an excellent example to study how the distribution of Kuiper Belt dust disk is affected by the existence of different planets. Numerical simulations of the orbital evolution of dust particles from Kuiper Belt objects show that Neptune, by trapping dust particles in mean motion resonances, creates a ring-like structure along its orbit. Jupiter and Saturn, by ejecting dust particles from the Solar System, create a radial brightness profile inside 10 AU that is quite different from that of a dust disk without planetary perturbations. On the other hand, Uranus and terrestrial planets do not produce significant signatures on the Kuiper Belt dust disk. Our Solar System would be recognized as a system with at least two planets when observed from afar. The characteristics of the dust ring near the orbit of Neptune are very similar to those observed in Epsilon Eridani dust ring. If those features are caused by a planet, the orbital location and mass of the planet can be specified by the structure of the dust ring. Results on the Kuiper Belt dust disk and Epsilon Eridani dust disk will be presented.