REMINDERS:

• Mastering Astronomy Homework #0 due this Friday

• Office Hours:
 Tuesday & Thursday afternoons, 2:00-3:00 PM (that’s today!)

• Email: lscuderi@ifa.hawaii.edu
SCALE IN ASTRONOMY: OUR PLACE IN THE UNIVERSE
SCALE IN ASTRONOMY

• Astronomy spans a huge range in scale from the distances between atoms to the size of the universe.

• For example, distances are measured in many different units:
 • Ångstroms (Å), Nanometers (nm)
 • Centimeters (cm), Meters (m)
 • Kilometer (km), Astronomical Unit (AU)
 • Light-year (ly), Parsec (pc)
POWERS OF TEN

- Use powers of ten to compare very different scales easily:
 - $1,000 = 10 \times 10 \times 10 = 10^3$
 - $10 = 10^1$
 - $0.1 = 1/10 = 10^{-1}$
 - $0.001 = 1/1000 = 1/(10 \times 10 \times 10) = 1/10^3 = 10^{-3}$
SCIENTIFIC NOTATION

• A number in scientific notation has several parts:

 Coefficient Exponent
 ↓ ↓
 • 1.99 × 10^{33} grams

 Base Units

• In scientific notation, the base is always 10

• KEEP IN MIND: many rules only apply to numbers with the same base
SCIENTIFIC NOTATION

• We can use powers of ten to express any number:
 • $6,325,000 = 6.325 \times 10^6$
 • $0.000006325 = 6.325 \times 10^{-6}$

• Any number to the 0th power (x^0) equals 1:
 • $0.00002^0 = 940000^0 = 3^0 = 1$

• Most importantly for us, $10^0 = 1$
SCIENTIFIC NOTATION

• To convert a number to scientific notation, move the decimal point and count the number of places moved:

• The distance from Earth to the Sun is 149,598,000,000 m
 • In scientific notation, this is \(1.49598 \times 10^{11}\) m

• Going left increases the number. Going right decreases it:
 • The wavelength of green light is 0.000 000 510 m
 • In scientific notation, this is \(5.10 \times 10^{-7}\) m
SCIENTIFIC NOTATION

• To convert a number to scientific notation, move the decimal point and count the number of places moved:

 • The distance from Earth to the Sun is 149,598,000,000. m
 \[2 + 3 + 3 + 3 = 11\]
 • In scientific notation, this is \(1.49598 \times 10^{11}\) m

• Going left increases the number. Going right decreases it:

 • The wavelength of green light is 0.000 000 510 m
 • In scientific notation, this is \(5.10 \times 10^{-7}\) m
SCIENTIFIC NOTATION

• To convert a number to scientific notation, move the decimal point and count the number of places moved:

 • The distance from Earth to the Sun is 149,598,000,000 m
 \[1.49598 \times 10^{11}\] m
 • In scientific notation, this is \(1.49598 \times 10^{11}\) m

• Going left increases the number. Going right decreases it:

 • The wavelength of green light is 0.000 000 510 m
 \[5.10 \times 10^{-7}\] m
 • In scientific notation, this is \(5.10 \times 10^{-7}\) m
CLASS ACTION!
THE RADIUS OF THE SUN IS 696,000,000 METERS

• This size could also be expressed as:
 • (A) 6.96×10^7 meters
 • (B) 6.96×10^{10} meters
 • (C) 6.96×10^6 meters
 • (D) 6.96×10^8 meters
THE RADIUS OF THE SUN IS 696,000,000 METERS

• This size could also be expressed as:
 • (A) 6.96×10^7 meters
 • (B) 6.96×10^{10} meters
 • (C) 6.96×10^6 meters
 • (D) 6.96×10^8 meters
THE AGE OF THE UNIVERSE IS 13,700,000,000 YEARS

• This age could also be expressed as:
 • (A) 1.37×10^{10} years
 • (B) 1.37×10^{8} years
 • (C) 13.7×10^{9} years
 • (D) 1.37×10^{6} years
THE AGE OF THE UNIVERSE IS 13,700,000,000 YEARS

• This age could also be expressed as:

 • (A) 1.37×10^{10} years
 • (B) 1.37×10^{8} years
 • (C) 13.7×10^{9} years
 • (D) 1.37×10^{6} years
THE RAPIDLY SPINNING PULSAR PSR 1937+21 HAS A ROTATIONAL PERIOD OF 1.56×10^{-3} seconds.

- This period could also be expressed as:
 - (A) 0.00156 seconds
 - (B) 0.156 seconds
 - (C) 0.000156 seconds
 - (D) 0.0000156 seconds
THE RAPIDLY SPINNING PULSAR PSR 1937+21 HAS A ROTATIONAL PERIOD OF 1.56×10^{-3} seconds

• This period could also be expressed as:

• (A) 0.00156 seconds

• (B) 0.156 seconds

• (C) 0.000156 seconds

• (D) 0.0000156 seconds
MATH WITH SCIENTIFIC NOTATION

- Multiplication:
 - Separate bases with exponents from coefficients and multiply separately. Exponents add:

\[
(4 \times 10^{11}) \times (3.5 \times 10^4) = (4 \times 3.5) \times (10^{11} \times 10^4) = 14 \times (10^{11+4}) = 14 \times 10^{15} = 1.4 \times 10^{16}
\]
MATH WITH SCIENTIFIC NOTATION

• Division:

 • Again, separate bases with exponents from coefficients and divide separately. Exponents now subtract:

 • \((4 \times 10^{11}) / (3.5 \times 10^{4}) = (4 / 3.5) \times (10^{11} / 10^{4}) \Rightarrow \)

 • \(= 1.14 \times (10^{(11-4)}) = 1.14 \times 10^{7}\)
THE ASTRONOMICAL UNIT

• The average distance between the Earth and the Sun, 149,597,871 kilometers (92,955,807 miles)

• Not an SI unit, but useful in astronomy
THE LIGHT-YEAR

• Not a measure of time!

• A measure of the distance that light travels in one year

• Roughly 9.46×10^{15} meters (5.87×10^{12} miles)

• You can use a light-second, minute, hour, or any length of time to describe a distance traveled in that time

• Also describes how long ago you are looking
A light-year is about 10^{16} meters, and an astronomical unit is about 10^{11} meters.

• How many AU are in one light year?

 • (A) 10^7
 • (B) 10^4
 • (C) 10^5
 • (D) 10^3
A LIGHT-YEAR IS ABOUT 10^{16} METERS, AND AN ASTRONOMICAL UNIT IS ABOUT 10^{11} METERS.

• How many AU are in one light year?

• (A) 10^7
• (B) 10^4
• (C) 10^5
• (D) 10^3
METRIC PREFIXES

• In the metric system, we can use prefixes before a unit to modify the size of the unit by factors of ten:

 • Prefix + unit = new bigger or smaller unit

• Examples:

 • centi (0.01) + meter (distance) = centimeter, 0.01 meters
 • kilo (1,000) + gram (mass) = kilogram, 1000 grams
METRIC PREFIXES: LARGE

<table>
<thead>
<tr>
<th>Text</th>
<th>Symbol</th>
<th>Factor</th>
<th>10^n</th>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>peta-</td>
<td>P</td>
<td>1 000 000 000 000 000</td>
<td>15</td>
<td>quadrillion</td>
</tr>
<tr>
<td>tera-</td>
<td>T</td>
<td>1 000 000 000 000 000</td>
<td>12</td>
<td>trillion</td>
</tr>
<tr>
<td>giga-</td>
<td>G</td>
<td>1 000 000 000</td>
<td>9</td>
<td>billion</td>
</tr>
<tr>
<td>mega-</td>
<td>M</td>
<td>1 000 000</td>
<td>6</td>
<td>million</td>
</tr>
<tr>
<td>kilo-</td>
<td>k</td>
<td>1 000</td>
<td>3</td>
<td>thousand</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>one</td>
</tr>
</tbody>
</table>
METRIC PREFIXES: SMALL

<table>
<thead>
<tr>
<th>Text</th>
<th>Symbol</th>
<th>Factor</th>
<th>10^n</th>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>one</td>
</tr>
<tr>
<td>centi-</td>
<td>c</td>
<td>0.01</td>
<td>-2</td>
<td>hundredth</td>
</tr>
<tr>
<td>milli-</td>
<td>m</td>
<td>0.001</td>
<td>-3</td>
<td>thousandth</td>
</tr>
<tr>
<td>micro-</td>
<td>µ</td>
<td>0.000 001</td>
<td>-6</td>
<td>millionth</td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>0.000 000 001</td>
<td>-9</td>
<td>billionth</td>
</tr>
<tr>
<td>Ång.*</td>
<td>Å</td>
<td>0.000 000 000 001</td>
<td>-10</td>
<td>-</td>
</tr>
</tbody>
</table>

Ångstrom is not an SI unit, but still useful
THE EARTH

Size: 6370 kilometers
THE EARTH AND THE MOON

Distance: 384,000 km (1 light-second)
THE SUN

Distance : 1.49×10^8 km (8 light-minutes)
THE SOLAR SYSTEM

Size: 7.48×10^9 km (6.9 light-hours)
SOLAR SYSTEM DISTANCES

Better, but is it completely correct now?
STILL WRONG!
FIELD TRIP!

Tuesday, July 8, 2014
FIELD TRIP!

...to the hallway.
SCALE SOLAR SYSTEM

<table>
<thead>
<tr>
<th>Planet</th>
<th>Size</th>
<th>Distance from Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>30 cm (12 in)</td>
<td>0</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.1 cm (0.04 in)</td>
<td>13 m (43 feet)</td>
</tr>
<tr>
<td>Venus</td>
<td>0.27 cm (0.1 in)</td>
<td>24 m (78 feet)</td>
</tr>
<tr>
<td>Earth</td>
<td>0.28 cm (0.11 in)</td>
<td>33 m (109 feet)</td>
</tr>
<tr>
<td>Mars</td>
<td>0.15 cm (0.06 in)</td>
<td>50 m (163 feet)</td>
</tr>
<tr>
<td>Jupiter</td>
<td>3.02 cm (1.19 in)</td>
<td>173 m (566 feet)</td>
</tr>
<tr>
<td>Saturn</td>
<td>2.51 cm (0.99 in)</td>
<td>0.32 km (0.21 miles)</td>
</tr>
<tr>
<td>Uranus</td>
<td>1.11 cm (0.43 in)</td>
<td>0.66 km (0.41 miles)</td>
</tr>
<tr>
<td>Neptune</td>
<td>1.08 cm (0.42 in)</td>
<td>0.98 km (0.61 miles)</td>
</tr>
</tbody>
</table>
ALPHA CENTAURI

Distance: 4.37 light-years
THE NEAREST STARS

Distance: < 10 light-years
NEBULAE

Distance: varies (100s to 100,000s of ly)
STAR CLUSTERS

Distance: varies (100s to 100,000s of ly)
THE MILKY WAY GALAXY

Size: 120,000 light-years across
THE ANDROMEDA GALAXY

Distance: 2.5×10^6 light years

Tuesday, July 8, 2014
THE LOCAL GROUP

Size: 10^7 light years
THE VIRGO SUPERCLUSTER

Size: 1.1×10^8 light years

Tuesday, July 8, 2014
THE OBSERVABLE UNIVERSE

Size: 9.3×10^{10} light years
LECTURE-TUTORIAL GUIDELINES

• Read both the instructions and questions carefully.

• Discuss the concepts and their answers with one another.

• Take time to understand it now! If you get stuck, talk to a nearby group.

• Come to a consensus answer your group all agrees on and record it in detail.

• If you can’t come to a consensus, or are unsure of your answer, flag us down, and we will try to help.
LECTURE-TUTORIAL GUIDELINES

• Break into groups of no more than 2-3.

• In your group, work through the following:
 • Looking at Distant Objects, page 149-150
 • Discuss answers---don't be silent!

• We will be walking around if you need help.

• If your group finishes early, check your answers with groups around you.